Extensions 1→N→G→Q→1 with N=C4×D17 and Q=C2

Direct product G=N×Q with N=C4×D17 and Q=C2
dρLabelID
C2×C4×D17136C2xC4xD17272,37

Semidirect products G=N:Q with N=C4×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D17)⋊1C2 = D4×D17φ: C2/C1C2 ⊆ Out C4×D17684+(C4xD17):1C2272,40
(C4×D17)⋊2C2 = D42D17φ: C2/C1C2 ⊆ Out C4×D171364-(C4xD17):2C2272,41
(C4×D17)⋊3C2 = D68⋊C2φ: C2/C1C2 ⊆ Out C4×D171364+(C4xD17):3C2272,43
(C4×D17)⋊4C2 = D685C2φ: C2/C1C2 ⊆ Out C4×D171362(C4xD17):4C2272,39

Non-split extensions G=N.Q with N=C4×D17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D17).1C2 = Q8×D17φ: C2/C1C2 ⊆ Out C4×D171364-(C4xD17).1C2272,42
(C4×D17).2C2 = C8⋊D17φ: C2/C1C2 ⊆ Out C4×D171362(C4xD17).2C2272,5
(C4×D17).3C2 = D34.4C4φ: C2/C1C2 ⊆ Out C4×D171364(C4xD17).3C2272,30
(C4×D17).4C2 = C68⋊C4φ: C2/C1C2 ⊆ Out C4×D17684(C4xD17).4C2272,32
(C4×D17).5C2 = C68.C4φ: C2/C1C2 ⊆ Out C4×D171364(C4xD17).5C2272,29
(C4×D17).6C2 = C4×C17⋊C4φ: C2/C1C2 ⊆ Out C4×D17684(C4xD17).6C2272,31
(C4×D17).7C2 = C8×D17φ: trivial image1362(C4xD17).7C2272,4

׿
×
𝔽