Extensions 1→N→G→Q→1 with N=C4xD17 and Q=C2

Direct product G=NxQ with N=C4xD17 and Q=C2
dρLabelID
C2xC4xD17136C2xC4xD17272,37

Semidirect products G=N:Q with N=C4xD17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD17):1C2 = D4xD17φ: C2/C1C2 ⊆ Out C4xD17684+(C4xD17):1C2272,40
(C4xD17):2C2 = D4:2D17φ: C2/C1C2 ⊆ Out C4xD171364-(C4xD17):2C2272,41
(C4xD17):3C2 = D68:C2φ: C2/C1C2 ⊆ Out C4xD171364+(C4xD17):3C2272,43
(C4xD17):4C2 = D68:5C2φ: C2/C1C2 ⊆ Out C4xD171362(C4xD17):4C2272,39

Non-split extensions G=N.Q with N=C4xD17 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4xD17).1C2 = Q8xD17φ: C2/C1C2 ⊆ Out C4xD171364-(C4xD17).1C2272,42
(C4xD17).2C2 = C8:D17φ: C2/C1C2 ⊆ Out C4xD171362(C4xD17).2C2272,5
(C4xD17).3C2 = D34.4C4φ: C2/C1C2 ⊆ Out C4xD171364(C4xD17).3C2272,30
(C4xD17).4C2 = C68:C4φ: C2/C1C2 ⊆ Out C4xD17684(C4xD17).4C2272,32
(C4xD17).5C2 = C68.C4φ: C2/C1C2 ⊆ Out C4xD171364(C4xD17).5C2272,29
(C4xD17).6C2 = C4xC17:C4φ: C2/C1C2 ⊆ Out C4xD17684(C4xD17).6C2272,31
(C4xD17).7C2 = C8xD17φ: trivial image1362(C4xD17).7C2272,4

׿
x
:
Z
F
o
wr
Q
<