Copied to
clipboard

G = S3xC47order 282 = 2·3·47

Direct product of C47 and S3

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: S3xC47, C3:C94, C141:3C2, SmallGroup(282,1)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC47
C1C3C141 — S3xC47
C3 — S3xC47
C1C47

Generators and relations for S3xC47
 G = < a,b,c | a47=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 12 in 8 conjugacy classes, 6 normal (all characteristic)
Quotients: C1, C2, S3, C47, C94, S3xC47
3C2
3C94

Smallest permutation representation of S3xC47
On 141 points
Generators in S141
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47)(48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94)(95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141)
(1 66 128)(2 67 129)(3 68 130)(4 69 131)(5 70 132)(6 71 133)(7 72 134)(8 73 135)(9 74 136)(10 75 137)(11 76 138)(12 77 139)(13 78 140)(14 79 141)(15 80 95)(16 81 96)(17 82 97)(18 83 98)(19 84 99)(20 85 100)(21 86 101)(22 87 102)(23 88 103)(24 89 104)(25 90 105)(26 91 106)(27 92 107)(28 93 108)(29 94 109)(30 48 110)(31 49 111)(32 50 112)(33 51 113)(34 52 114)(35 53 115)(36 54 116)(37 55 117)(38 56 118)(39 57 119)(40 58 120)(41 59 121)(42 60 122)(43 61 123)(44 62 124)(45 63 125)(46 64 126)(47 65 127)
(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 121)(60 122)(61 123)(62 124)(63 125)(64 126)(65 127)(66 128)(67 129)(68 130)(69 131)(70 132)(71 133)(72 134)(73 135)(74 136)(75 137)(76 138)(77 139)(78 140)(79 141)(80 95)(81 96)(82 97)(83 98)(84 99)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 106)(92 107)(93 108)(94 109)

G:=sub<Sym(141)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47)(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141), (1,66,128)(2,67,129)(3,68,130)(4,69,131)(5,70,132)(6,71,133)(7,72,134)(8,73,135)(9,74,136)(10,75,137)(11,76,138)(12,77,139)(13,78,140)(14,79,141)(15,80,95)(16,81,96)(17,82,97)(18,83,98)(19,84,99)(20,85,100)(21,86,101)(22,87,102)(23,88,103)(24,89,104)(25,90,105)(26,91,106)(27,92,107)(28,93,108)(29,94,109)(30,48,110)(31,49,111)(32,50,112)(33,51,113)(34,52,114)(35,53,115)(36,54,116)(37,55,117)(38,56,118)(39,57,119)(40,58,120)(41,59,121)(42,60,122)(43,61,123)(44,62,124)(45,63,125)(46,64,126)(47,65,127), (48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,121)(60,122)(61,123)(62,124)(63,125)(64,126)(65,127)(66,128)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,135)(74,136)(75,137)(76,138)(77,139)(78,140)(79,141)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47)(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141), (1,66,128)(2,67,129)(3,68,130)(4,69,131)(5,70,132)(6,71,133)(7,72,134)(8,73,135)(9,74,136)(10,75,137)(11,76,138)(12,77,139)(13,78,140)(14,79,141)(15,80,95)(16,81,96)(17,82,97)(18,83,98)(19,84,99)(20,85,100)(21,86,101)(22,87,102)(23,88,103)(24,89,104)(25,90,105)(26,91,106)(27,92,107)(28,93,108)(29,94,109)(30,48,110)(31,49,111)(32,50,112)(33,51,113)(34,52,114)(35,53,115)(36,54,116)(37,55,117)(38,56,118)(39,57,119)(40,58,120)(41,59,121)(42,60,122)(43,61,123)(44,62,124)(45,63,125)(46,64,126)(47,65,127), (48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,121)(60,122)(61,123)(62,124)(63,125)(64,126)(65,127)(66,128)(67,129)(68,130)(69,131)(70,132)(71,133)(72,134)(73,135)(74,136)(75,137)(76,138)(77,139)(78,140)(79,141)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(94,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47),(48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94),(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141)], [(1,66,128),(2,67,129),(3,68,130),(4,69,131),(5,70,132),(6,71,133),(7,72,134),(8,73,135),(9,74,136),(10,75,137),(11,76,138),(12,77,139),(13,78,140),(14,79,141),(15,80,95),(16,81,96),(17,82,97),(18,83,98),(19,84,99),(20,85,100),(21,86,101),(22,87,102),(23,88,103),(24,89,104),(25,90,105),(26,91,106),(27,92,107),(28,93,108),(29,94,109),(30,48,110),(31,49,111),(32,50,112),(33,51,113),(34,52,114),(35,53,115),(36,54,116),(37,55,117),(38,56,118),(39,57,119),(40,58,120),(41,59,121),(42,60,122),(43,61,123),(44,62,124),(45,63,125),(46,64,126),(47,65,127)], [(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,121),(60,122),(61,123),(62,124),(63,125),(64,126),(65,127),(66,128),(67,129),(68,130),(69,131),(70,132),(71,133),(72,134),(73,135),(74,136),(75,137),(76,138),(77,139),(78,140),(79,141),(80,95),(81,96),(82,97),(83,98),(84,99),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,106),(92,107),(93,108),(94,109)]])

141 conjugacy classes

class 1  2  3 47A···47AT94A···94AT141A···141AT
order12347···4794···94141···141
size1321···13···32···2

141 irreducible representations

dim111122
type+++
imageC1C2C47C94S3S3xC47
kernelS3xC47C141S3C3C47C1
# reps114646146

Matrix representation of S3xC47 in GL2(F283) generated by

1810
0181
,
282282
10
,
01
10
G:=sub<GL(2,GF(283))| [181,0,0,181],[282,1,282,0],[0,1,1,0] >;

S3xC47 in GAP, Magma, Sage, TeX

S_3\times C_{47}
% in TeX

G:=Group("S3xC47");
// GroupNames label

G:=SmallGroup(282,1);
// by ID

G=gap.SmallGroup(282,1);
# by ID

G:=PCGroup([3,-2,-47,-3,1694]);
// Polycyclic

G:=Group<a,b,c|a^47=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3xC47 in TeX

׿
x
:
Z
F
o
wr
Q
<