Extensions 1→N→G→Q→1 with N=C6×D11 and Q=C2

Direct product G=N×Q with N=C6×D11 and Q=C2
dρLabelID
C2×C6×D11132C2xC6xD11264,36

Semidirect products G=N:Q with N=C6×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D11)⋊1C2 = C33⋊D4φ: C2/C1C2 ⊆ Out C6×D111324-(C6xD11):1C2264,8
(C6×D11)⋊2C2 = C3⋊D44φ: C2/C1C2 ⊆ Out C6×D111324+(C6xD11):2C2264,9
(C6×D11)⋊3C2 = C2×S3×D11φ: C2/C1C2 ⊆ Out C6×D11664+(C6xD11):3C2264,34
(C6×D11)⋊4C2 = C3×D44φ: C2/C1C2 ⊆ Out C6×D111322(C6xD11):4C2264,15
(C6×D11)⋊5C2 = C3×C11⋊D4φ: C2/C1C2 ⊆ Out C6×D111322(C6xD11):5C2264,17

Non-split extensions G=N.Q with N=C6×D11 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×D11).C2 = Dic3×D11φ: C2/C1C2 ⊆ Out C6×D111324-(C6xD11).C2264,5
(C6×D11).2C2 = C12×D11φ: trivial image1322(C6xD11).2C2264,14

׿
×
𝔽