Copied to
clipboard

G = C2×S3×D11order 264 = 23·3·11

Direct product of C2, S3 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×S3×D11, C33⋊C23, C221D6, C61D22, C66⋊C22, D665C2, D33⋊C22, (S3×C22)⋊3C2, (C6×D11)⋊3C2, (S3×C11)⋊C22, C111(C22×S3), (C3×D11)⋊C22, C31(C22×D11), SmallGroup(264,34)

Series: Derived Chief Lower central Upper central

C1C33 — C2×S3×D11
C1C11C33C3×D11S3×D11 — C2×S3×D11
C33 — C2×S3×D11
C1C2

Generators and relations for C2×S3×D11
 G = < a,b,c,d,e | a2=b3=c2=d11=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 488 in 64 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C3, C22, S3, S3, C6, C6, C23, C11, D6, D6, C2×C6, D11, D11, C22, C22, C22×S3, C33, D22, D22, C2×C22, S3×C11, C3×D11, D33, C66, C22×D11, S3×D11, C6×D11, S3×C22, D66, C2×S3×D11
Quotients: C1, C2, C22, S3, C23, D6, D11, C22×S3, D22, C22×D11, S3×D11, C2×S3×D11

Smallest permutation representation of C2×S3×D11
On 66 points
Generators in S66
(1 43)(2 44)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)
(1 21 32)(2 22 33)(3 12 23)(4 13 24)(5 14 25)(6 15 26)(7 16 27)(8 17 28)(9 18 29)(10 19 30)(11 20 31)(34 45 56)(35 46 57)(36 47 58)(37 48 59)(38 49 60)(39 50 61)(40 51 62)(41 52 63)(42 53 64)(43 54 65)(44 55 66)
(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)

G:=sub<Sym(66)| (1,43)(2,44)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66), (1,21,32)(2,22,33)(3,12,23)(4,13,24)(5,14,25)(6,15,26)(7,16,27)(8,17,28)(9,18,29)(10,19,30)(11,20,31)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)>;

G:=Group( (1,43)(2,44)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66), (1,21,32)(2,22,33)(3,12,23)(4,13,24)(5,14,25)(6,15,26)(7,16,27)(8,17,28)(9,18,29)(10,19,30)(11,20,31)(34,45,56)(35,46,57)(36,47,58)(37,48,59)(38,49,60)(39,50,61)(40,51,62)(41,52,63)(42,53,64)(43,54,65)(44,55,66), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65) );

G=PermutationGroup([[(1,43),(2,44),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66)], [(1,21,32),(2,22,33),(3,12,23),(4,13,24),(5,14,25),(6,15,26),(7,16,27),(8,17,28),(9,18,29),(10,19,30),(11,20,31),(34,45,56),(35,46,57),(36,47,58),(37,48,59),(38,49,60),(39,50,61),(40,51,62),(41,52,63),(42,53,64),(43,54,65),(44,55,66)], [(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C11A···11E22A···22E22F···22O33A···33E66A···66E
order12222222366611···1122···2222···2233···3366···66
size1133111133332222222···22···26···64···44···4

42 irreducible representations

dim1111122222244
type+++++++++++++
imageC1C2C2C2C2S3D6D6D11D22D22S3×D11C2×S3×D11
kernelC2×S3×D11S3×D11C6×D11S3×C22D66D22D11C22D6S3C6C2C1
# reps14111121510555

Matrix representation of C2×S3×D11 in GL4(𝔽67) generated by

1000
0100
00660
00066
,
1000
0100
006517
00551
,
1000
0100
0010
001266
,
0100
661900
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(67))| [1,0,0,0,0,1,0,0,0,0,66,0,0,0,0,66],[1,0,0,0,0,1,0,0,0,0,65,55,0,0,17,1],[1,0,0,0,0,1,0,0,0,0,1,12,0,0,0,66],[0,66,0,0,1,19,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

C2×S3×D11 in GAP, Magma, Sage, TeX

C_2\times S_3\times D_{11}
% in TeX

G:=Group("C2xS3xD11");
// GroupNames label

G:=SmallGroup(264,34);
// by ID

G=gap.SmallGroup(264,34);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,168,6004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^11=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽