Copied to
clipboard

G = C33⋊D4order 264 = 23·3·11

1st semidirect product of C33 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C331D4, D61D11, D221S3, C6.4D22, C22.4D6, Dic334C2, C66.4C22, (S3×C22)⋊1C2, (C6×D11)⋊1C2, C112(C3⋊D4), C32(C11⋊D4), C2.4(S3×D11), SmallGroup(264,8)

Series: Derived Chief Lower central Upper central

C1C66 — C33⋊D4
C1C11C33C66C6×D11 — C33⋊D4
C33C66 — C33⋊D4
C1C2

Generators and relations for C33⋊D4
 G = < a,b,c | a33=b4=c2=1, bab-1=a-1, cac=a10, cbc=b-1 >

6C2
22C2
3C22
11C22
33C4
2S3
22C6
2D11
6C22
33D4
11C2×C6
11Dic3
3Dic11
3C2×C22
2S3×C11
2C3×D11
11C3⋊D4
3C11⋊D4

Smallest permutation representation of C33⋊D4
On 132 points
Generators in S132
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 82 54 101)(2 81 55 100)(3 80 56 132)(4 79 57 131)(5 78 58 130)(6 77 59 129)(7 76 60 128)(8 75 61 127)(9 74 62 126)(10 73 63 125)(11 72 64 124)(12 71 65 123)(13 70 66 122)(14 69 34 121)(15 68 35 120)(16 67 36 119)(17 99 37 118)(18 98 38 117)(19 97 39 116)(20 96 40 115)(21 95 41 114)(22 94 42 113)(23 93 43 112)(24 92 44 111)(25 91 45 110)(26 90 46 109)(27 89 47 108)(28 88 48 107)(29 87 49 106)(30 86 50 105)(31 85 51 104)(32 84 52 103)(33 83 53 102)
(2 11)(3 21)(4 31)(5 8)(6 18)(7 28)(9 15)(10 25)(13 22)(14 32)(16 19)(17 29)(20 26)(24 33)(27 30)(34 52)(35 62)(36 39)(37 49)(38 59)(40 46)(41 56)(42 66)(44 53)(45 63)(47 50)(48 60)(51 57)(55 64)(58 61)(67 116)(68 126)(69 103)(70 113)(71 123)(72 100)(73 110)(74 120)(75 130)(76 107)(77 117)(78 127)(79 104)(80 114)(81 124)(82 101)(83 111)(84 121)(85 131)(86 108)(87 118)(88 128)(89 105)(90 115)(91 125)(92 102)(93 112)(94 122)(95 132)(96 109)(97 119)(98 129)(99 106)

G:=sub<Sym(132)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,82,54,101)(2,81,55,100)(3,80,56,132)(4,79,57,131)(5,78,58,130)(6,77,59,129)(7,76,60,128)(8,75,61,127)(9,74,62,126)(10,73,63,125)(11,72,64,124)(12,71,65,123)(13,70,66,122)(14,69,34,121)(15,68,35,120)(16,67,36,119)(17,99,37,118)(18,98,38,117)(19,97,39,116)(20,96,40,115)(21,95,41,114)(22,94,42,113)(23,93,43,112)(24,92,44,111)(25,91,45,110)(26,90,46,109)(27,89,47,108)(28,88,48,107)(29,87,49,106)(30,86,50,105)(31,85,51,104)(32,84,52,103)(33,83,53,102), (2,11)(3,21)(4,31)(5,8)(6,18)(7,28)(9,15)(10,25)(13,22)(14,32)(16,19)(17,29)(20,26)(24,33)(27,30)(34,52)(35,62)(36,39)(37,49)(38,59)(40,46)(41,56)(42,66)(44,53)(45,63)(47,50)(48,60)(51,57)(55,64)(58,61)(67,116)(68,126)(69,103)(70,113)(71,123)(72,100)(73,110)(74,120)(75,130)(76,107)(77,117)(78,127)(79,104)(80,114)(81,124)(82,101)(83,111)(84,121)(85,131)(86,108)(87,118)(88,128)(89,105)(90,115)(91,125)(92,102)(93,112)(94,122)(95,132)(96,109)(97,119)(98,129)(99,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,82,54,101)(2,81,55,100)(3,80,56,132)(4,79,57,131)(5,78,58,130)(6,77,59,129)(7,76,60,128)(8,75,61,127)(9,74,62,126)(10,73,63,125)(11,72,64,124)(12,71,65,123)(13,70,66,122)(14,69,34,121)(15,68,35,120)(16,67,36,119)(17,99,37,118)(18,98,38,117)(19,97,39,116)(20,96,40,115)(21,95,41,114)(22,94,42,113)(23,93,43,112)(24,92,44,111)(25,91,45,110)(26,90,46,109)(27,89,47,108)(28,88,48,107)(29,87,49,106)(30,86,50,105)(31,85,51,104)(32,84,52,103)(33,83,53,102), (2,11)(3,21)(4,31)(5,8)(6,18)(7,28)(9,15)(10,25)(13,22)(14,32)(16,19)(17,29)(20,26)(24,33)(27,30)(34,52)(35,62)(36,39)(37,49)(38,59)(40,46)(41,56)(42,66)(44,53)(45,63)(47,50)(48,60)(51,57)(55,64)(58,61)(67,116)(68,126)(69,103)(70,113)(71,123)(72,100)(73,110)(74,120)(75,130)(76,107)(77,117)(78,127)(79,104)(80,114)(81,124)(82,101)(83,111)(84,121)(85,131)(86,108)(87,118)(88,128)(89,105)(90,115)(91,125)(92,102)(93,112)(94,122)(95,132)(96,109)(97,119)(98,129)(99,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,82,54,101),(2,81,55,100),(3,80,56,132),(4,79,57,131),(5,78,58,130),(6,77,59,129),(7,76,60,128),(8,75,61,127),(9,74,62,126),(10,73,63,125),(11,72,64,124),(12,71,65,123),(13,70,66,122),(14,69,34,121),(15,68,35,120),(16,67,36,119),(17,99,37,118),(18,98,38,117),(19,97,39,116),(20,96,40,115),(21,95,41,114),(22,94,42,113),(23,93,43,112),(24,92,44,111),(25,91,45,110),(26,90,46,109),(27,89,47,108),(28,88,48,107),(29,87,49,106),(30,86,50,105),(31,85,51,104),(32,84,52,103),(33,83,53,102)], [(2,11),(3,21),(4,31),(5,8),(6,18),(7,28),(9,15),(10,25),(13,22),(14,32),(16,19),(17,29),(20,26),(24,33),(27,30),(34,52),(35,62),(36,39),(37,49),(38,59),(40,46),(41,56),(42,66),(44,53),(45,63),(47,50),(48,60),(51,57),(55,64),(58,61),(67,116),(68,126),(69,103),(70,113),(71,123),(72,100),(73,110),(74,120),(75,130),(76,107),(77,117),(78,127),(79,104),(80,114),(81,124),(82,101),(83,111),(84,121),(85,131),(86,108),(87,118),(88,128),(89,105),(90,115),(91,125),(92,102),(93,112),(94,122),(95,132),(96,109),(97,119),(98,129),(99,106)]])

39 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C11A···11E22A···22E22F···22O33A···33E66A···66E
order12223466611···1122···2222···2233···3366···66
size11622266222222···22···26···64···44···4

39 irreducible representations

dim1111222222244
type++++++++++-
imageC1C2C2C2S3D4D6D11C3⋊D4D22C11⋊D4S3×D11C33⋊D4
kernelC33⋊D4Dic33C6×D11S3×C22D22C33C22D6C11C6C3C2C1
# reps11111115251055

Matrix representation of C33⋊D4 in GL4(𝔽397) generated by

362000
03400
0030145
00352385
,
039600
1000
0010
00293396
,
1000
039600
0010
00293396
G:=sub<GL(4,GF(397))| [362,0,0,0,0,34,0,0,0,0,301,352,0,0,45,385],[0,1,0,0,396,0,0,0,0,0,1,293,0,0,0,396],[1,0,0,0,0,396,0,0,0,0,1,293,0,0,0,396] >;

C33⋊D4 in GAP, Magma, Sage, TeX

C_{33}\rtimes D_4
% in TeX

G:=Group("C33:D4");
// GroupNames label

G:=SmallGroup(264,8);
// by ID

G=gap.SmallGroup(264,8);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-11,61,168,6004]);
// Polycyclic

G:=Group<a,b,c|a^33=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^10,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C33⋊D4 in TeX

׿
×
𝔽