Extensions 1→N→G→Q→1 with N=S3×C22 and Q=C2

Direct product G=N×Q with N=S3×C22 and Q=C2
dρLabelID
S3×C2×C22132S3xC2xC22264,37

Semidirect products G=N:Q with N=S3×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C22)⋊1C2 = C33⋊D4φ: C2/C1C2 ⊆ Out S3×C221324-(S3xC22):1C2264,8
(S3×C22)⋊2C2 = C11⋊D12φ: C2/C1C2 ⊆ Out S3×C221324+(S3xC22):2C2264,10
(S3×C22)⋊3C2 = C2×S3×D11φ: C2/C1C2 ⊆ Out S3×C22664+(S3xC22):3C2264,34
(S3×C22)⋊4C2 = C11×D12φ: C2/C1C2 ⊆ Out S3×C221322(S3xC22):4C2264,20
(S3×C22)⋊5C2 = C11×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C221322(S3xC22):5C2264,22

Non-split extensions G=N.Q with N=S3×C22 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C22).C2 = S3×Dic11φ: C2/C1C2 ⊆ Out S3×C221324-(S3xC22).C2264,6
(S3×C22).2C2 = S3×C44φ: trivial image1322(S3xC22).2C2264,19

׿
×
𝔽