Extensions 1→N→G→Q→1 with N=S3xC22 and Q=C2

Direct product G=NxQ with N=S3xC22 and Q=C2
dρLabelID
S3xC2xC22132S3xC2xC22264,37

Semidirect products G=N:Q with N=S3xC22 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC22):1C2 = C33:D4φ: C2/C1C2 ⊆ Out S3xC221324-(S3xC22):1C2264,8
(S3xC22):2C2 = C11:D12φ: C2/C1C2 ⊆ Out S3xC221324+(S3xC22):2C2264,10
(S3xC22):3C2 = C2xS3xD11φ: C2/C1C2 ⊆ Out S3xC22664+(S3xC22):3C2264,34
(S3xC22):4C2 = C11xD12φ: C2/C1C2 ⊆ Out S3xC221322(S3xC22):4C2264,20
(S3xC22):5C2 = C11xC3:D4φ: C2/C1C2 ⊆ Out S3xC221322(S3xC22):5C2264,22

Non-split extensions G=N.Q with N=S3xC22 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC22).C2 = S3xDic11φ: C2/C1C2 ⊆ Out S3xC221324-(S3xC22).C2264,6
(S3xC22).2C2 = S3xC44φ: trivial image1322(S3xC22).2C2264,19

׿
x
:
Z
F
o
wr
Q
<