Copied to
clipboard

G = C123D12order 288 = 25·32

3rd semidirect product of C12 and D12 acting via D12/C6=C22

metabelian, supersoluble, monomial

Aliases: C123D12, C62.239C23, (C3×C12)⋊12D4, (C2×C12).34D6, C6.116(S3×D4), C6.54(C2×D12), C42(C12⋊S3), C32(C12⋊D4), C6.11D127C2, C3219(C4⋊D4), (C6×C12).16C22, C6.51(Q83S3), C2.6(C12.26D6), (C3×C4⋊C4)⋊6S3, C4⋊C43(C3⋊S3), (C2×C3⋊S3)⋊12D4, C2.13(D4×C3⋊S3), (C2×C12⋊S3)⋊6C2, (C32×C4⋊C4)⋊15C2, C2.9(C2×C12⋊S3), (C3×C6).194(C2×D4), (C3×C6).161(C4○D4), (C2×C6).256(C22×S3), C22.50(C22×C3⋊S3), (C22×C3⋊S3).87C22, (C2×C3⋊Dic3).160C22, (C2×C4×C3⋊S3)⋊2C2, (C2×C4).12(C2×C3⋊S3), SmallGroup(288,752)

Series: Derived Chief Lower central Upper central

C1C62 — C123D12
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C123D12
C32C62 — C123D12
C1C22C4⋊C4

Generators and relations for C123D12
 G = < a,b,c | a12=b12=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >

Subgroups: 1388 in 282 conjugacy classes, 79 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4⋊D4, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C6×C12, C6×C12, C22×C3⋊S3, C22×C3⋊S3, C12⋊D4, C6.11D12, C32×C4⋊C4, C2×C4×C3⋊S3, C2×C12⋊S3, C2×C12⋊S3, C123D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, D12, C22×S3, C4⋊D4, C2×C3⋊S3, C2×D12, S3×D4, Q83S3, C12⋊S3, C22×C3⋊S3, C12⋊D4, C2×C12⋊S3, D4×C3⋊S3, C12.26D6, C123D12

Smallest permutation representation of C123D12
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 49 46 34 141 17 69 75 89 128 120 108)(2 56 47 29 142 24 70 82 90 123 109 103)(3 51 48 36 143 19 71 77 91 130 110 98)(4 58 37 31 144 14 72 84 92 125 111 105)(5 53 38 26 133 21 61 79 93 132 112 100)(6 60 39 33 134 16 62 74 94 127 113 107)(7 55 40 28 135 23 63 81 95 122 114 102)(8 50 41 35 136 18 64 76 96 129 115 97)(9 57 42 30 137 13 65 83 85 124 116 104)(10 52 43 25 138 20 66 78 86 131 117 99)(11 59 44 32 139 15 67 73 87 126 118 106)(12 54 45 27 140 22 68 80 88 121 119 101)
(1 46)(2 45)(3 44)(4 43)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 48)(12 47)(13 132)(14 131)(15 130)(16 129)(17 128)(18 127)(19 126)(20 125)(21 124)(22 123)(23 122)(24 121)(25 105)(26 104)(27 103)(28 102)(29 101)(30 100)(31 99)(32 98)(33 97)(34 108)(35 107)(36 106)(50 60)(51 59)(52 58)(53 57)(54 56)(61 85)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 90)(69 89)(70 88)(71 87)(72 86)(73 77)(74 76)(78 84)(79 83)(80 82)(109 140)(110 139)(111 138)(112 137)(113 136)(114 135)(115 134)(116 133)(117 144)(118 143)(119 142)(120 141)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,49,46,34,141,17,69,75,89,128,120,108)(2,56,47,29,142,24,70,82,90,123,109,103)(3,51,48,36,143,19,71,77,91,130,110,98)(4,58,37,31,144,14,72,84,92,125,111,105)(5,53,38,26,133,21,61,79,93,132,112,100)(6,60,39,33,134,16,62,74,94,127,113,107)(7,55,40,28,135,23,63,81,95,122,114,102)(8,50,41,35,136,18,64,76,96,129,115,97)(9,57,42,30,137,13,65,83,85,124,116,104)(10,52,43,25,138,20,66,78,86,131,117,99)(11,59,44,32,139,15,67,73,87,126,118,106)(12,54,45,27,140,22,68,80,88,121,119,101), (1,46)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,48)(12,47)(13,132)(14,131)(15,130)(16,129)(17,128)(18,127)(19,126)(20,125)(21,124)(22,123)(23,122)(24,121)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,108)(35,107)(36,106)(50,60)(51,59)(52,58)(53,57)(54,56)(61,85)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,77)(74,76)(78,84)(79,83)(80,82)(109,140)(110,139)(111,138)(112,137)(113,136)(114,135)(115,134)(116,133)(117,144)(118,143)(119,142)(120,141)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,49,46,34,141,17,69,75,89,128,120,108)(2,56,47,29,142,24,70,82,90,123,109,103)(3,51,48,36,143,19,71,77,91,130,110,98)(4,58,37,31,144,14,72,84,92,125,111,105)(5,53,38,26,133,21,61,79,93,132,112,100)(6,60,39,33,134,16,62,74,94,127,113,107)(7,55,40,28,135,23,63,81,95,122,114,102)(8,50,41,35,136,18,64,76,96,129,115,97)(9,57,42,30,137,13,65,83,85,124,116,104)(10,52,43,25,138,20,66,78,86,131,117,99)(11,59,44,32,139,15,67,73,87,126,118,106)(12,54,45,27,140,22,68,80,88,121,119,101), (1,46)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,48)(12,47)(13,132)(14,131)(15,130)(16,129)(17,128)(18,127)(19,126)(20,125)(21,124)(22,123)(23,122)(24,121)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,108)(35,107)(36,106)(50,60)(51,59)(52,58)(53,57)(54,56)(61,85)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,87)(72,86)(73,77)(74,76)(78,84)(79,83)(80,82)(109,140)(110,139)(111,138)(112,137)(113,136)(114,135)(115,134)(116,133)(117,144)(118,143)(119,142)(120,141) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,49,46,34,141,17,69,75,89,128,120,108),(2,56,47,29,142,24,70,82,90,123,109,103),(3,51,48,36,143,19,71,77,91,130,110,98),(4,58,37,31,144,14,72,84,92,125,111,105),(5,53,38,26,133,21,61,79,93,132,112,100),(6,60,39,33,134,16,62,74,94,127,113,107),(7,55,40,28,135,23,63,81,95,122,114,102),(8,50,41,35,136,18,64,76,96,129,115,97),(9,57,42,30,137,13,65,83,85,124,116,104),(10,52,43,25,138,20,66,78,86,131,117,99),(11,59,44,32,139,15,67,73,87,126,118,106),(12,54,45,27,140,22,68,80,88,121,119,101)], [(1,46),(2,45),(3,44),(4,43),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,48),(12,47),(13,132),(14,131),(15,130),(16,129),(17,128),(18,127),(19,126),(20,125),(21,124),(22,123),(23,122),(24,121),(25,105),(26,104),(27,103),(28,102),(29,101),(30,100),(31,99),(32,98),(33,97),(34,108),(35,107),(36,106),(50,60),(51,59),(52,58),(53,57),(54,56),(61,85),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,90),(69,89),(70,88),(71,87),(72,86),(73,77),(74,76),(78,84),(79,83),(80,82),(109,140),(110,139),(111,138),(112,137),(113,136),(114,135),(115,134),(116,133),(117,144),(118,143),(119,142),(120,141)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F6A···6L12A···12X
order1222222233334444446···612···12
size1111181836362222224418182···24···4

54 irreducible representations

dim1111122222244
type++++++++++++
imageC1C2C2C2C2S3D4D4D6C4○D4D12S3×D4Q83S3
kernelC123D12C6.11D12C32×C4⋊C4C2×C4×C3⋊S3C2×C12⋊S3C3×C4⋊C4C3×C12C2×C3⋊S3C2×C12C3×C6C12C6C6
# reps121134221221644

Matrix representation of C123D12 in GL8(𝔽13)

10000000
01000000
000120000
00110000
000012000
000001200
000000117
00000032
,
1210000000
51000000
00110000
001200000
00000100
000012100
000000120
00000051
,
120000000
51000000
0012120000
00010000
000001200
000012000
00000010
000000812

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,11,3,0,0,0,0,0,0,7,2],[12,5,0,0,0,0,0,0,10,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,5,0,0,0,0,0,0,0,1],[12,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,12] >;

C123D12 in GAP, Magma, Sage, TeX

C_{12}\rtimes_3D_{12}
% in TeX

G:=Group("C12:3D12");
// GroupNames label

G:=SmallGroup(288,752);
// by ID

G=gap.SmallGroup(288,752);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,58,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽