extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC12).1D4 = C4.S3wrC2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).1D4 | 288,375 |
(C3xC12).2D4 = (C3xC12).D4 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).2D4 | 288,376 |
(C3xC12).3D4 = C3:S3.2D8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).3D4 | 288,377 |
(C3xC12).4D4 = C3:S3.2Q16 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).4D4 | 288,378 |
(C3xC12).5D4 = C32:D16 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).5D4 | 288,382 |
(C3xC12).6D4 = C32:SD32 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 8+ | (C3xC12).6D4 | 288,383 |
(C3xC12).7D4 = C32:Q32 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 96 | 8- | (C3xC12).7D4 | 288,384 |
(C3xC12).8D4 = S32:Q8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).8D4 | 288,868 |
(C3xC12).9D4 = C4.4S3wrC2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).9D4 | 288,869 |
(C3xC12).10D4 = C32:C4:Q8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).10D4 | 288,870 |
(C3xC12).11D4 = C32:D8:C2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).11D4 | 288,872 |
(C3xC12).12D4 = C3:S3:D8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).12D4 | 288,873 |
(C3xC12).13D4 = C32:Q16:C2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).13D4 | 288,874 |
(C3xC12).14D4 = C3:S3:2SD16 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 8+ | (C3xC12).14D4 | 288,875 |
(C3xC12).15D4 = C3:S3:Q16 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 8- | (C3xC12).15D4 | 288,876 |
(C3xC12).16D4 = S32:C8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).16D4 | 288,374 |
(C3xC12).17D4 = C32:C4wrC2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).17D4 | 288,379 |
(C3xC12).18D4 = C32:C4:C8 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).18D4 | 288,380 |
(C3xC12).19D4 = C4.19S3wrC2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).19D4 | 288,381 |
(C3xC12).20D4 = C32:D8:5C2 | φ: D4/C1 → D4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).20D4 | 288,871 |
(C3xC12).21D4 = C32:2D16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).21D4 | 288,193 |
(C3xC12).22D4 = C3:D48 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4+ | (C3xC12).22D4 | 288,194 |
(C3xC12).23D4 = D24.S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).23D4 | 288,195 |
(C3xC12).24D4 = C32:3SD32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4- | (C3xC12).24D4 | 288,196 |
(C3xC12).25D4 = C24.49D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4+ | (C3xC12).25D4 | 288,197 |
(C3xC12).26D4 = C32:2Q32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).26D4 | 288,198 |
(C3xC12).27D4 = C32:3Q32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4- | (C3xC12).27D4 | 288,199 |
(C3xC12).28D4 = C12.D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).28D4 | 288,206 |
(C3xC12).29D4 = C12.70D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 24 | 4+ | (C3xC12).29D4 | 288,207 |
(C3xC12).30D4 = C12.14D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).30D4 | 288,208 |
(C3xC12).31D4 = C12.71D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4- | (C3xC12).31D4 | 288,209 |
(C3xC12).32D4 = D12:3Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).32D4 | 288,210 |
(C3xC12).33D4 = C6.16D24 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).33D4 | 288,211 |
(C3xC12).34D4 = C6.17D24 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).34D4 | 288,212 |
(C3xC12).35D4 = Dic6:Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).35D4 | 288,213 |
(C3xC12).36D4 = C6.Dic12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).36D4 | 288,214 |
(C3xC12).37D4 = C12.73D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).37D4 | 288,215 |
(C3xC12).38D4 = C3xC6.D8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).38D4 | 288,243 |
(C3xC12).39D4 = C3xC6.SD16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).39D4 | 288,244 |
(C3xC12).40D4 = C3xC12.46D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).40D4 | 288,257 |
(C3xC12).41D4 = C3xC3:D16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).41D4 | 288,260 |
(C3xC12).42D4 = C3xD8.S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).42D4 | 288,261 |
(C3xC12).43D4 = C3xC8.6D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).43D4 | 288,262 |
(C3xC12).44D4 = C3xC3:Q32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | 4 | (C3xC12).44D4 | 288,263 |
(C3xC12).45D4 = C3xD4:Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).45D4 | 288,266 |
(C3xC12).46D4 = C3xC12.D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).46D4 | 288,267 |
(C3xC12).47D4 = C3xQ8:2Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).47D4 | 288,269 |
(C3xC12).48D4 = C3xC12.10D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).48D4 | 288,270 |
(C3xC12).49D4 = C62.113D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).49D4 | 288,284 |
(C3xC12).50D4 = C62.114D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).50D4 | 288,285 |
(C3xC12).51D4 = C12.19D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).51D4 | 288,298 |
(C3xC12).52D4 = C32:7D16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).52D4 | 288,301 |
(C3xC12).53D4 = C32:8SD32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).53D4 | 288,302 |
(C3xC12).54D4 = C32:10SD32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).54D4 | 288,303 |
(C3xC12).55D4 = C32:7Q32 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).55D4 | 288,304 |
(C3xC12).56D4 = C62.116D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).56D4 | 288,307 |
(C3xC12).57D4 = (C6xD4).S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).57D4 | 288,308 |
(C3xC12).58D4 = C62.117D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).58D4 | 288,310 |
(C3xC12).59D4 = (C6xC12).C4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).59D4 | 288,311 |
(C3xC12).60D4 = C2xC32:2D8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).60D4 | 288,469 |
(C3xC12).61D4 = D12:20D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).61D4 | 288,471 |
(C3xC12).62D4 = C2xC3:D24 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).62D4 | 288,472 |
(C3xC12).63D4 = D12:18D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 24 | 4+ | (C3xC12).63D4 | 288,473 |
(C3xC12).64D4 = C2xDic6:S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).64D4 | 288,474 |
(C3xC12).65D4 = D12.32D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).65D4 | 288,475 |
(C3xC12).66D4 = C2xD12.S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).66D4 | 288,476 |
(C3xC12).67D4 = D12.28D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).67D4 | 288,478 |
(C3xC12).68D4 = D12.29D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4- | (C3xC12).68D4 | 288,479 |
(C3xC12).69D4 = C2xC32:5SD16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).69D4 | 288,480 |
(C3xC12).70D4 = Dic6.29D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).70D4 | 288,481 |
(C3xC12).71D4 = C2xC32:2Q16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).71D4 | 288,482 |
(C3xC12).72D4 = C2xC32:3Q16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).72D4 | 288,483 |
(C3xC12).73D4 = D6:6Dic6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).73D4 | 288,504 |
(C3xC12).74D4 = D6:7Dic6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).74D4 | 288,505 |
(C3xC12).75D4 = C12.27D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).75D4 | 288,508 |
(C3xC12).76D4 = C62.33C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).76D4 | 288,511 |
(C3xC12).77D4 = C12.28D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).77D4 | 288,512 |
(C3xC12).78D4 = Dic3:Dic6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).78D4 | 288,514 |
(C3xC12).79D4 = C12.30D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).79D4 | 288,519 |
(C3xC12).80D4 = C62.43C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).80D4 | 288,521 |
(C3xC12).81D4 = C3xC4.D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).81D4 | 288,668 |
(C3xC12).82D4 = C3xC8:D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).82D4 | 288,679 |
(C3xC12).83D4 = C3xC8.D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).83D4 | 288,680 |
(C3xC12).84D4 = C6xD4:S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).84D4 | 288,702 |
(C3xC12).85D4 = C3xD12:6C22 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).85D4 | 288,703 |
(C3xC12).86D4 = C6xD4.S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).86D4 | 288,704 |
(C3xC12).87D4 = C3xC23.12D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).87D4 | 288,707 |
(C3xC12).88D4 = C6xQ8:2S3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).88D4 | 288,712 |
(C3xC12).89D4 = C3xQ8.11D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).89D4 | 288,713 |
(C3xC12).90D4 = C6xC3:Q16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).90D4 | 288,714 |
(C3xC12).91D4 = C3xDic3:Q8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).91D4 | 288,715 |
(C3xC12).92D4 = C3xD6:3Q8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).92D4 | 288,717 |
(C3xC12).93D4 = C3xC12.23D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).93D4 | 288,718 |
(C3xC12).94D4 = C12.31D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).94D4 | 288,754 |
(C3xC12).95D4 = C24:3D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).95D4 | 288,765 |
(C3xC12).96D4 = C24.5D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).96D4 | 288,766 |
(C3xC12).97D4 = C2xC32:7D8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).97D4 | 288,788 |
(C3xC12).98D4 = C62.131D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 72 | | (C3xC12).98D4 | 288,789 |
(C3xC12).99D4 = C2xC32:9SD16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).99D4 | 288,790 |
(C3xC12).100D4 = C62.254C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).100D4 | 288,793 |
(C3xC12).101D4 = C2xC32:11SD16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).101D4 | 288,798 |
(C3xC12).102D4 = C62.134D4 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).102D4 | 288,799 |
(C3xC12).103D4 = C2xC32:7Q16 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).103D4 | 288,800 |
(C3xC12).104D4 = C62.259C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 288 | | (C3xC12).104D4 | 288,801 |
(C3xC12).105D4 = C62.261C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).105D4 | 288,803 |
(C3xC12).106D4 = C62.262C23 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 144 | | (C3xC12).106D4 | 288,804 |
(C3xC12).107D4 = C12.77D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).107D4 | 288,204 |
(C3xC12).108D4 = C12.78D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | | (C3xC12).108D4 | 288,205 |
(C3xC12).109D4 = D12:4Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).109D4 | 288,216 |
(C3xC12).110D4 = D12:2Dic3 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).110D4 | 288,217 |
(C3xC12).111D4 = C12.80D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).111D4 | 288,218 |
(C3xC12).112D4 = C12.81D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).112D4 | 288,219 |
(C3xC12).113D4 = C12.15Dic6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 96 | | (C3xC12).113D4 | 288,220 |
(C3xC12).114D4 = C12.82D12 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).114D4 | 288,225 |
(C3xC12).115D4 = C62.5Q8 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).115D4 | 288,226 |
(C3xC12).116D4 = D12.30D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).116D4 | 288,470 |
(C3xC12).117D4 = D12.27D6 | φ: D4/C2 → C22 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).117D4 | 288,477 |
(C3xC12).118D4 = C32:5D16 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).118D4 | 288,274 |
(C3xC12).119D4 = C6.D24 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).119D4 | 288,275 |
(C3xC12).120D4 = C32:5Q32 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).120D4 | 288,276 |
(C3xC12).121D4 = C12:6Dic6 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).121D4 | 288,726 |
(C3xC12).122D4 = C122:6C2 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).122D4 | 288,732 |
(C3xC12).123D4 = C2xC24:2S3 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).123D4 | 288,759 |
(C3xC12).124D4 = C2xC32:5D8 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).124D4 | 288,760 |
(C3xC12).125D4 = C2xC32:5Q16 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).125D4 | 288,762 |
(C3xC12).126D4 = C3xD48 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | 2 | (C3xC12).126D4 | 288,233 |
(C3xC12).127D4 = C3xC48:C2 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | 2 | (C3xC12).127D4 | 288,234 |
(C3xC12).128D4 = C3xDic24 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | 2 | (C3xC12).128D4 | 288,235 |
(C3xC12).129D4 = C3xC12:2Q8 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).129D4 | 288,640 |
(C3xC12).130D4 = C3xC42:7S3 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).130D4 | 288,646 |
(C3xC12).131D4 = C6xC24:C2 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).131D4 | 288,673 |
(C3xC12).132D4 = C6xD24 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).132D4 | 288,674 |
(C3xC12).133D4 = C6xDic12 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).133D4 | 288,676 |
(C3xC12).134D4 = C3xC12:C8 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).134D4 | 288,238 |
(C3xC12).135D4 = C3xC42:4S3 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 24 | 2 | (C3xC12).135D4 | 288,239 |
(C3xC12).136D4 = C3xC24.C4 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 48 | 2 | (C3xC12).136D4 | 288,253 |
(C3xC12).137D4 = C12.57D12 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).137D4 | 288,279 |
(C3xC12).138D4 = C122:C2 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).138D4 | 288,280 |
(C3xC12).139D4 = C12.59D12 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).139D4 | 288,294 |
(C3xC12).140D4 = C3xC4oD24 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 48 | 2 | (C3xC12).140D4 | 288,675 |
(C3xC12).141D4 = C24.78D6 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).141D4 | 288,761 |
(C3xC12).142D4 = C32xD16 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).142D4 | 288,329 |
(C3xC12).143D4 = C32xSD32 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).143D4 | 288,330 |
(C3xC12).144D4 = C32xQ32 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).144D4 | 288,331 |
(C3xC12).145D4 = C32xC4.4D4 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).145D4 | 288,821 |
(C3xC12).146D4 = C32xC4:Q8 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).146D4 | 288,825 |
(C3xC12).147D4 = D8xC3xC6 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).147D4 | 288,829 |
(C3xC12).148D4 = SD16xC3xC6 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).148D4 | 288,830 |
(C3xC12).149D4 = Q16xC3xC6 | φ: D4/C4 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).149D4 | 288,831 |
(C3xC12).150D4 = C6.4Dic12 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).150D4 | 288,291 |
(C3xC12).151D4 = C62.84D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).151D4 | 288,296 |
(C3xC12).152D4 = C12.20D12 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).152D4 | 288,299 |
(C3xC12).153D4 = C62:10Q8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).153D4 | 288,781 |
(C3xC12).154D4 = C62.73D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).154D4 | 288,806 |
(C3xC12).155D4 = C62.75D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).155D4 | 288,808 |
(C3xC12).156D4 = C3xC2.Dic12 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).156D4 | 288,250 |
(C3xC12).157D4 = C3xC2.D24 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).157D4 | 288,255 |
(C3xC12).158D4 = C3xC12.47D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).158D4 | 288,258 |
(C3xC12).159D4 = C3xC12.48D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | | (C3xC12).159D4 | 288,695 |
(C3xC12).160D4 = C3xD4:D6 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).160D4 | 288,720 |
(C3xC12).161D4 = C3xQ8.14D6 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).161D4 | 288,722 |
(C3xC12).162D4 = C3xDic3:C8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).162D4 | 288,248 |
(C3xC12).163D4 = C3xD6:C8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 96 | | (C3xC12).163D4 | 288,254 |
(C3xC12).164D4 = C3xC12.53D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).164D4 | 288,256 |
(C3xC12).165D4 = C3xD12:C4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).165D4 | 288,259 |
(C3xC12).166D4 = C3xC12.55D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | | (C3xC12).166D4 | 288,264 |
(C3xC12).167D4 = C3xQ8:3Dic3 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).167D4 | 288,271 |
(C3xC12).168D4 = C12.30Dic6 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).168D4 | 288,289 |
(C3xC12).169D4 = C12.60D12 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).169D4 | 288,295 |
(C3xC12).170D4 = C62.8Q8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).170D4 | 288,297 |
(C3xC12).171D4 = C62.37D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).171D4 | 288,300 |
(C3xC12).172D4 = C62:7C8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).172D4 | 288,305 |
(C3xC12).173D4 = C62.39D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).173D4 | 288,312 |
(C3xC12).174D4 = C3xQ8.13D6 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).174D4 | 288,721 |
(C3xC12).175D4 = C62.74D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).175D4 | 288,807 |
(C3xC12).176D4 = C32xC4.D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).176D4 | 288,318 |
(C3xC12).177D4 = C32xC4.10D4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).177D4 | 288,319 |
(C3xC12).178D4 = C32xD4:C4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).178D4 | 288,320 |
(C3xC12).179D4 = C32xQ8:C4 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 288 | | (C3xC12).179D4 | 288,321 |
(C3xC12).180D4 = C32xC22:Q8 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).180D4 | 288,819 |
(C3xC12).181D4 = C32xC8:C22 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).181D4 | 288,833 |
(C3xC12).182D4 = C32xC8.C22 | φ: D4/C22 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).182D4 | 288,834 |
(C3xC12).183D4 = C32xC22:C8 | central extension (φ=1) | 144 | | (C3xC12).183D4 | 288,316 |
(C3xC12).184D4 = C32xC4wrC2 | central extension (φ=1) | 72 | | (C3xC12).184D4 | 288,322 |
(C3xC12).185D4 = C32xC4:C8 | central extension (φ=1) | 288 | | (C3xC12).185D4 | 288,323 |
(C3xC12).186D4 = C32xC8.C4 | central extension (φ=1) | 144 | | (C3xC12).186D4 | 288,326 |
(C3xC12).187D4 = C32xC4oD8 | central extension (φ=1) | 144 | | (C3xC12).187D4 | 288,832 |