extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2xD12) = S3xC24:C2 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(C2xD12) | 288,440 |
C6.2(C2xD12) = S3xD24 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.2(C2xD12) | 288,441 |
C6.3(C2xD12) = C24:1D6 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.3(C2xD12) | 288,442 |
C6.4(C2xD12) = D24:S3 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(C2xD12) | 288,443 |
C6.5(C2xD12) = S3xDic12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.5(C2xD12) | 288,447 |
C6.6(C2xD12) = C24.3D6 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.6(C2xD12) | 288,448 |
C6.7(C2xD12) = Dic12:S3 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(C2xD12) | 288,449 |
C6.8(C2xD12) = D6.1D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C2xD12) | 288,454 |
C6.9(C2xD12) = D24:7S3 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | 4- | C6.9(C2xD12) | 288,455 |
C6.10(C2xD12) = D6.3D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | 4+ | C6.10(C2xD12) | 288,456 |
C6.11(C2xD12) = Dic3.D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.11(C2xD12) | 288,500 |
C6.12(C2xD12) = Dic3:4D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.12(C2xD12) | 288,528 |
C6.13(C2xD12) = Dic3:D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.13(C2xD12) | 288,534 |
C6.14(C2xD12) = S3xC4:Dic3 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.14(C2xD12) | 288,537 |
C6.15(C2xD12) = D6.D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.15(C2xD12) | 288,538 |
C6.16(C2xD12) = D6.9D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xD12) | 288,539 |
C6.17(C2xD12) = Dic3xD12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xD12) | 288,540 |
C6.18(C2xD12) = D6:2Dic6 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xD12) | 288,541 |
C6.19(C2xD12) = Dic3:5D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.19(C2xD12) | 288,542 |
C6.20(C2xD12) = C62.65C23 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.20(C2xD12) | 288,543 |
C6.21(C2xD12) = D6:D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.21(C2xD12) | 288,554 |
C6.22(C2xD12) = D6:2D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.22(C2xD12) | 288,556 |
C6.23(C2xD12) = C12:7D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.23(C2xD12) | 288,557 |
C6.24(C2xD12) = Dic3:3D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.24(C2xD12) | 288,558 |
C6.25(C2xD12) = C12:D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.25(C2xD12) | 288,559 |
C6.26(C2xD12) = C12:3Dic6 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xD12) | 288,566 |
C6.27(C2xD12) = S3xD6:C4 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.27(C2xD12) | 288,568 |
C6.28(C2xD12) = D6:4D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.28(C2xD12) | 288,570 |
C6.29(C2xD12) = D6:5D12 | φ: C2xD12/D12 → C2 ⊆ Aut C6 | 48 | | C6.29(C2xD12) | 288,571 |
C6.30(C2xD12) = C36:2Q8 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.30(C2xD12) | 288,79 |
C6.31(C2xD12) = C4xD36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.31(C2xD12) | 288,83 |
C6.32(C2xD12) = C42:6D9 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.32(C2xD12) | 288,84 |
C6.33(C2xD12) = C42:7D9 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.33(C2xD12) | 288,85 |
C6.34(C2xD12) = C22:3D36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 72 | | C6.34(C2xD12) | 288,92 |
C6.35(C2xD12) = C22.4D36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.35(C2xD12) | 288,96 |
C6.36(C2xD12) = C4:D36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.36(C2xD12) | 288,105 |
C6.37(C2xD12) = D18:2Q8 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.37(C2xD12) | 288,107 |
C6.38(C2xD12) = C2xDic36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.38(C2xD12) | 288,109 |
C6.39(C2xD12) = C2xC72:C2 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.39(C2xD12) | 288,113 |
C6.40(C2xD12) = C2xD72 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.40(C2xD12) | 288,114 |
C6.41(C2xD12) = D72:7C2 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | 2 | C6.41(C2xD12) | 288,115 |
C6.42(C2xD12) = C8:D18 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 72 | 4+ | C6.42(C2xD12) | 288,118 |
C6.43(C2xD12) = C8.D18 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | 4- | C6.43(C2xD12) | 288,119 |
C6.44(C2xD12) = C2xC4:Dic9 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.44(C2xD12) | 288,135 |
C6.45(C2xD12) = C2xD18:C4 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.45(C2xD12) | 288,137 |
C6.46(C2xD12) = C36:7D4 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.46(C2xD12) | 288,140 |
C6.47(C2xD12) = C22xD36 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.47(C2xD12) | 288,354 |
C6.48(C2xD12) = C12:6Dic6 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.48(C2xD12) | 288,726 |
C6.49(C2xD12) = C4xC12:S3 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.49(C2xD12) | 288,730 |
C6.50(C2xD12) = C12:4D12 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.50(C2xD12) | 288,731 |
C6.51(C2xD12) = C122:6C2 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.51(C2xD12) | 288,732 |
C6.52(C2xD12) = C62:12D4 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 72 | | C6.52(C2xD12) | 288,739 |
C6.53(C2xD12) = C62.69D4 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.53(C2xD12) | 288,743 |
C6.54(C2xD12) = C12:3D12 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.54(C2xD12) | 288,752 |
C6.55(C2xD12) = C12.31D12 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.55(C2xD12) | 288,754 |
C6.56(C2xD12) = C2xC24:2S3 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.56(C2xD12) | 288,759 |
C6.57(C2xD12) = C2xC32:5D8 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.57(C2xD12) | 288,760 |
C6.58(C2xD12) = C24.78D6 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.58(C2xD12) | 288,761 |
C6.59(C2xD12) = C2xC32:5Q16 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.59(C2xD12) | 288,762 |
C6.60(C2xD12) = C24:3D6 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 72 | | C6.60(C2xD12) | 288,765 |
C6.61(C2xD12) = C24.5D6 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.61(C2xD12) | 288,766 |
C6.62(C2xD12) = C2xC12:Dic3 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 288 | | C6.62(C2xD12) | 288,782 |
C6.63(C2xD12) = C2xC6.11D12 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.63(C2xD12) | 288,784 |
C6.64(C2xD12) = C62:19D4 | φ: C2xD12/C2xC12 → C2 ⊆ Aut C6 | 144 | | C6.64(C2xD12) | 288,787 |
C6.65(C2xD12) = C2xC3:D24 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.65(C2xD12) | 288,472 |
C6.66(C2xD12) = D12:18D6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 24 | 4+ | C6.66(C2xD12) | 288,473 |
C6.67(C2xD12) = C2xD12.S3 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.67(C2xD12) | 288,476 |
C6.68(C2xD12) = D12.27D6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.68(C2xD12) | 288,477 |
C6.69(C2xD12) = D12.28D6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.69(C2xD12) | 288,478 |
C6.70(C2xD12) = D12.29D6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | 4- | C6.70(C2xD12) | 288,479 |
C6.71(C2xD12) = C2xC32:5SD16 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.71(C2xD12) | 288,480 |
C6.72(C2xD12) = Dic6.29D6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.72(C2xD12) | 288,481 |
C6.73(C2xD12) = C2xC32:3Q16 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.73(C2xD12) | 288,483 |
C6.74(C2xD12) = D6:7Dic6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.74(C2xD12) | 288,505 |
C6.75(C2xD12) = C12.27D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.75(C2xD12) | 288,508 |
C6.76(C2xD12) = C12.28D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.76(C2xD12) | 288,512 |
C6.77(C2xD12) = Dic3:Dic6 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.77(C2xD12) | 288,514 |
C6.78(C2xD12) = C12.30D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.78(C2xD12) | 288,519 |
C6.79(C2xD12) = C4xC3:D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.79(C2xD12) | 288,551 |
C6.80(C2xD12) = C12:2D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.80(C2xD12) | 288,564 |
C6.81(C2xD12) = C2xD6:Dic3 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.81(C2xD12) | 288,608 |
C6.82(C2xD12) = C62.57D4 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.82(C2xD12) | 288,610 |
C6.83(C2xD12) = C2xC6.D12 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.83(C2xD12) | 288,611 |
C6.84(C2xD12) = C2xDic3:Dic3 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.84(C2xD12) | 288,613 |
C6.85(C2xD12) = C62.60D4 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.85(C2xD12) | 288,614 |
C6.86(C2xD12) = C62:5D4 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.86(C2xD12) | 288,625 |
C6.87(C2xD12) = C62:6D4 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.87(C2xD12) | 288,626 |
C6.88(C2xD12) = C62:8D4 | φ: C2xD12/C22xS3 → C2 ⊆ Aut C6 | 24 | | C6.88(C2xD12) | 288,629 |
C6.89(C2xD12) = C3xC12:2Q8 | central extension (φ=1) | 96 | | C6.89(C2xD12) | 288,640 |
C6.90(C2xD12) = C12xD12 | central extension (φ=1) | 96 | | C6.90(C2xD12) | 288,644 |
C6.91(C2xD12) = C3xC4:D12 | central extension (φ=1) | 96 | | C6.91(C2xD12) | 288,645 |
C6.92(C2xD12) = C3xC42:7S3 | central extension (φ=1) | 96 | | C6.92(C2xD12) | 288,646 |
C6.93(C2xD12) = C3xD6:D4 | central extension (φ=1) | 48 | | C6.93(C2xD12) | 288,653 |
C6.94(C2xD12) = C3xC23.21D6 | central extension (φ=1) | 48 | | C6.94(C2xD12) | 288,657 |
C6.95(C2xD12) = C3xC12:D4 | central extension (φ=1) | 96 | | C6.95(C2xD12) | 288,666 |
C6.96(C2xD12) = C3xC4.D12 | central extension (φ=1) | 96 | | C6.96(C2xD12) | 288,668 |
C6.97(C2xD12) = C6xC24:C2 | central extension (φ=1) | 96 | | C6.97(C2xD12) | 288,673 |
C6.98(C2xD12) = C6xD24 | central extension (φ=1) | 96 | | C6.98(C2xD12) | 288,674 |
C6.99(C2xD12) = C3xC4oD24 | central extension (φ=1) | 48 | 2 | C6.99(C2xD12) | 288,675 |
C6.100(C2xD12) = C6xDic12 | central extension (φ=1) | 96 | | C6.100(C2xD12) | 288,676 |
C6.101(C2xD12) = C3xC8:D6 | central extension (φ=1) | 48 | 4 | C6.101(C2xD12) | 288,679 |
C6.102(C2xD12) = C3xC8.D6 | central extension (φ=1) | 48 | 4 | C6.102(C2xD12) | 288,680 |
C6.103(C2xD12) = C6xC4:Dic3 | central extension (φ=1) | 96 | | C6.103(C2xD12) | 288,696 |
C6.104(C2xD12) = C6xD6:C4 | central extension (φ=1) | 96 | | C6.104(C2xD12) | 288,698 |
C6.105(C2xD12) = C3xC12:7D4 | central extension (φ=1) | 48 | | C6.105(C2xD12) | 288,701 |