Extensions 1→N→G→Q→1 with N=C6 and Q=C2xD12

Direct product G=NxQ with N=C6 and Q=C2xD12
dρLabelID
C2xC6xD1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C6 and Q=C2xD12
extensionφ:Q→Aut NdρLabelID
C6:1(C2xD12) = C2xS3xD12φ: C2xD12/D12C2 ⊆ Aut C648C6:1(C2xD12)288,951
C6:2(C2xD12) = C22xC12:S3φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6:2(C2xD12)288,1005
C6:3(C2xD12) = C22xC3:D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6:3(C2xD12)288,974

Non-split extensions G=N.Q with N=C6 and Q=C2xD12
extensionφ:Q→Aut NdρLabelID
C6.1(C2xD12) = S3xC24:C2φ: C2xD12/D12C2 ⊆ Aut C6484C6.1(C2xD12)288,440
C6.2(C2xD12) = S3xD24φ: C2xD12/D12C2 ⊆ Aut C6484+C6.2(C2xD12)288,441
C6.3(C2xD12) = C24:1D6φ: C2xD12/D12C2 ⊆ Aut C6484+C6.3(C2xD12)288,442
C6.4(C2xD12) = D24:S3φ: C2xD12/D12C2 ⊆ Aut C6484C6.4(C2xD12)288,443
C6.5(C2xD12) = S3xDic12φ: C2xD12/D12C2 ⊆ Aut C6964-C6.5(C2xD12)288,447
C6.6(C2xD12) = C24.3D6φ: C2xD12/D12C2 ⊆ Aut C6964-C6.6(C2xD12)288,448
C6.7(C2xD12) = Dic12:S3φ: C2xD12/D12C2 ⊆ Aut C6484C6.7(C2xD12)288,449
C6.8(C2xD12) = D6.1D12φ: C2xD12/D12C2 ⊆ Aut C6484C6.8(C2xD12)288,454
C6.9(C2xD12) = D24:7S3φ: C2xD12/D12C2 ⊆ Aut C6964-C6.9(C2xD12)288,455
C6.10(C2xD12) = D6.3D12φ: C2xD12/D12C2 ⊆ Aut C6484+C6.10(C2xD12)288,456
C6.11(C2xD12) = Dic3.D12φ: C2xD12/D12C2 ⊆ Aut C648C6.11(C2xD12)288,500
C6.12(C2xD12) = Dic3:4D12φ: C2xD12/D12C2 ⊆ Aut C648C6.12(C2xD12)288,528
C6.13(C2xD12) = Dic3:D12φ: C2xD12/D12C2 ⊆ Aut C648C6.13(C2xD12)288,534
C6.14(C2xD12) = S3xC4:Dic3φ: C2xD12/D12C2 ⊆ Aut C696C6.14(C2xD12)288,537
C6.15(C2xD12) = D6.D12φ: C2xD12/D12C2 ⊆ Aut C648C6.15(C2xD12)288,538
C6.16(C2xD12) = D6.9D12φ: C2xD12/D12C2 ⊆ Aut C696C6.16(C2xD12)288,539
C6.17(C2xD12) = Dic3xD12φ: C2xD12/D12C2 ⊆ Aut C696C6.17(C2xD12)288,540
C6.18(C2xD12) = D6:2Dic6φ: C2xD12/D12C2 ⊆ Aut C696C6.18(C2xD12)288,541
C6.19(C2xD12) = Dic3:5D12φ: C2xD12/D12C2 ⊆ Aut C648C6.19(C2xD12)288,542
C6.20(C2xD12) = C62.65C23φ: C2xD12/D12C2 ⊆ Aut C648C6.20(C2xD12)288,543
C6.21(C2xD12) = D6:D12φ: C2xD12/D12C2 ⊆ Aut C648C6.21(C2xD12)288,554
C6.22(C2xD12) = D6:2D12φ: C2xD12/D12C2 ⊆ Aut C696C6.22(C2xD12)288,556
C6.23(C2xD12) = C12:7D12φ: C2xD12/D12C2 ⊆ Aut C648C6.23(C2xD12)288,557
C6.24(C2xD12) = Dic3:3D12φ: C2xD12/D12C2 ⊆ Aut C648C6.24(C2xD12)288,558
C6.25(C2xD12) = C12:D12φ: C2xD12/D12C2 ⊆ Aut C648C6.25(C2xD12)288,559
C6.26(C2xD12) = C12:3Dic6φ: C2xD12/D12C2 ⊆ Aut C696C6.26(C2xD12)288,566
C6.27(C2xD12) = S3xD6:C4φ: C2xD12/D12C2 ⊆ Aut C648C6.27(C2xD12)288,568
C6.28(C2xD12) = D6:4D12φ: C2xD12/D12C2 ⊆ Aut C648C6.28(C2xD12)288,570
C6.29(C2xD12) = D6:5D12φ: C2xD12/D12C2 ⊆ Aut C648C6.29(C2xD12)288,571
C6.30(C2xD12) = C36:2Q8φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.30(C2xD12)288,79
C6.31(C2xD12) = C4xD36φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.31(C2xD12)288,83
C6.32(C2xD12) = C42:6D9φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.32(C2xD12)288,84
C6.33(C2xD12) = C42:7D9φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.33(C2xD12)288,85
C6.34(C2xD12) = C22:3D36φ: C2xD12/C2xC12C2 ⊆ Aut C672C6.34(C2xD12)288,92
C6.35(C2xD12) = C22.4D36φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.35(C2xD12)288,96
C6.36(C2xD12) = C4:D36φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.36(C2xD12)288,105
C6.37(C2xD12) = D18:2Q8φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.37(C2xD12)288,107
C6.38(C2xD12) = C2xDic36φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.38(C2xD12)288,109
C6.39(C2xD12) = C2xC72:C2φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.39(C2xD12)288,113
C6.40(C2xD12) = C2xD72φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.40(C2xD12)288,114
C6.41(C2xD12) = D72:7C2φ: C2xD12/C2xC12C2 ⊆ Aut C61442C6.41(C2xD12)288,115
C6.42(C2xD12) = C8:D18φ: C2xD12/C2xC12C2 ⊆ Aut C6724+C6.42(C2xD12)288,118
C6.43(C2xD12) = C8.D18φ: C2xD12/C2xC12C2 ⊆ Aut C61444-C6.43(C2xD12)288,119
C6.44(C2xD12) = C2xC4:Dic9φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.44(C2xD12)288,135
C6.45(C2xD12) = C2xD18:C4φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.45(C2xD12)288,137
C6.46(C2xD12) = C36:7D4φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.46(C2xD12)288,140
C6.47(C2xD12) = C22xD36φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.47(C2xD12)288,354
C6.48(C2xD12) = C12:6Dic6φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.48(C2xD12)288,726
C6.49(C2xD12) = C4xC12:S3φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.49(C2xD12)288,730
C6.50(C2xD12) = C12:4D12φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.50(C2xD12)288,731
C6.51(C2xD12) = C122:6C2φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.51(C2xD12)288,732
C6.52(C2xD12) = C62:12D4φ: C2xD12/C2xC12C2 ⊆ Aut C672C6.52(C2xD12)288,739
C6.53(C2xD12) = C62.69D4φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.53(C2xD12)288,743
C6.54(C2xD12) = C12:3D12φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.54(C2xD12)288,752
C6.55(C2xD12) = C12.31D12φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.55(C2xD12)288,754
C6.56(C2xD12) = C2xC24:2S3φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.56(C2xD12)288,759
C6.57(C2xD12) = C2xC32:5D8φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.57(C2xD12)288,760
C6.58(C2xD12) = C24.78D6φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.58(C2xD12)288,761
C6.59(C2xD12) = C2xC32:5Q16φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.59(C2xD12)288,762
C6.60(C2xD12) = C24:3D6φ: C2xD12/C2xC12C2 ⊆ Aut C672C6.60(C2xD12)288,765
C6.61(C2xD12) = C24.5D6φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.61(C2xD12)288,766
C6.62(C2xD12) = C2xC12:Dic3φ: C2xD12/C2xC12C2 ⊆ Aut C6288C6.62(C2xD12)288,782
C6.63(C2xD12) = C2xC6.11D12φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.63(C2xD12)288,784
C6.64(C2xD12) = C62:19D4φ: C2xD12/C2xC12C2 ⊆ Aut C6144C6.64(C2xD12)288,787
C6.65(C2xD12) = C2xC3:D24φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.65(C2xD12)288,472
C6.66(C2xD12) = D12:18D6φ: C2xD12/C22xS3C2 ⊆ Aut C6244+C6.66(C2xD12)288,473
C6.67(C2xD12) = C2xD12.S3φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.67(C2xD12)288,476
C6.68(C2xD12) = D12.27D6φ: C2xD12/C22xS3C2 ⊆ Aut C6484C6.68(C2xD12)288,477
C6.69(C2xD12) = D12.28D6φ: C2xD12/C22xS3C2 ⊆ Aut C6484C6.69(C2xD12)288,478
C6.70(C2xD12) = D12.29D6φ: C2xD12/C22xS3C2 ⊆ Aut C6484-C6.70(C2xD12)288,479
C6.71(C2xD12) = C2xC32:5SD16φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.71(C2xD12)288,480
C6.72(C2xD12) = Dic6.29D6φ: C2xD12/C22xS3C2 ⊆ Aut C6484C6.72(C2xD12)288,481
C6.73(C2xD12) = C2xC32:3Q16φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.73(C2xD12)288,483
C6.74(C2xD12) = D6:7Dic6φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.74(C2xD12)288,505
C6.75(C2xD12) = C12.27D12φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.75(C2xD12)288,508
C6.76(C2xD12) = C12.28D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.76(C2xD12)288,512
C6.77(C2xD12) = Dic3:Dic6φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.77(C2xD12)288,514
C6.78(C2xD12) = C12.30D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.78(C2xD12)288,519
C6.79(C2xD12) = C4xC3:D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.79(C2xD12)288,551
C6.80(C2xD12) = C12:2D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.80(C2xD12)288,564
C6.81(C2xD12) = C2xD6:Dic3φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.81(C2xD12)288,608
C6.82(C2xD12) = C62.57D4φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.82(C2xD12)288,610
C6.83(C2xD12) = C2xC6.D12φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.83(C2xD12)288,611
C6.84(C2xD12) = C2xDic3:Dic3φ: C2xD12/C22xS3C2 ⊆ Aut C696C6.84(C2xD12)288,613
C6.85(C2xD12) = C62.60D4φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.85(C2xD12)288,614
C6.86(C2xD12) = C62:5D4φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.86(C2xD12)288,625
C6.87(C2xD12) = C62:6D4φ: C2xD12/C22xS3C2 ⊆ Aut C648C6.87(C2xD12)288,626
C6.88(C2xD12) = C62:8D4φ: C2xD12/C22xS3C2 ⊆ Aut C624C6.88(C2xD12)288,629
C6.89(C2xD12) = C3xC12:2Q8central extension (φ=1)96C6.89(C2xD12)288,640
C6.90(C2xD12) = C12xD12central extension (φ=1)96C6.90(C2xD12)288,644
C6.91(C2xD12) = C3xC4:D12central extension (φ=1)96C6.91(C2xD12)288,645
C6.92(C2xD12) = C3xC42:7S3central extension (φ=1)96C6.92(C2xD12)288,646
C6.93(C2xD12) = C3xD6:D4central extension (φ=1)48C6.93(C2xD12)288,653
C6.94(C2xD12) = C3xC23.21D6central extension (φ=1)48C6.94(C2xD12)288,657
C6.95(C2xD12) = C3xC12:D4central extension (φ=1)96C6.95(C2xD12)288,666
C6.96(C2xD12) = C3xC4.D12central extension (φ=1)96C6.96(C2xD12)288,668
C6.97(C2xD12) = C6xC24:C2central extension (φ=1)96C6.97(C2xD12)288,673
C6.98(C2xD12) = C6xD24central extension (φ=1)96C6.98(C2xD12)288,674
C6.99(C2xD12) = C3xC4oD24central extension (φ=1)482C6.99(C2xD12)288,675
C6.100(C2xD12) = C6xDic12central extension (φ=1)96C6.100(C2xD12)288,676
C6.101(C2xD12) = C3xC8:D6central extension (φ=1)484C6.101(C2xD12)288,679
C6.102(C2xD12) = C3xC8.D6central extension (φ=1)484C6.102(C2xD12)288,680
C6.103(C2xD12) = C6xC4:Dic3central extension (φ=1)96C6.103(C2xD12)288,696
C6.104(C2xD12) = C6xD6:C4central extension (φ=1)96C6.104(C2xD12)288,698
C6.105(C2xD12) = C3xC12:7D4central extension (φ=1)48C6.105(C2xD12)288,701

׿
x
:
Z
F
o
wr
Q
<