metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8.2D18, SD16⋊2D9, D4.4D18, D18.8D4, C24.30D6, Q8.6D18, Dic36⋊6C2, C36.6C23, C72.9C22, Dic9.10D4, Dic18.2C22, (Q8×D9)⋊2C2, C8⋊D9⋊2C2, D4⋊2D9.C2, D4.D9⋊4C2, (C3×D4).6D6, C9⋊Q16⋊1C2, C2.20(D4×D9), C6.94(S3×D4), C9⋊C8.1C22, (C9×SD16)⋊2C2, C18.32(C2×D4), C9⋊2(C8.C22), C3.(D4.D6), (C3×Q8).26D6, C4.6(C22×D9), (C3×SD16).2S3, (D4×C9).4C22, (C4×D9).3C22, (Q8×C9).1C22, C12.45(C22×S3), SmallGroup(288,125)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for SD16⋊D9
G = < a,b,c,d | a8=b2=c9=d2=1, bab=a3, ac=ca, dad=a5, bc=cb, dbd=a4b, dcd=c-1 >
Subgroups: 396 in 90 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C9, Dic3, C12, C12, D6, C2×C6, M4(2), SD16, SD16, Q16, C2×Q8, C4○D4, D9, C18, C18, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C8.C22, Dic9, Dic9, C36, C36, D18, C2×C18, C8⋊S3, Dic12, D4.S3, C3⋊Q16, C3×SD16, D4⋊2S3, S3×Q8, C9⋊C8, C72, Dic18, Dic18, C4×D9, C4×D9, C2×Dic9, C9⋊D4, D4×C9, Q8×C9, D4.D6, Dic36, C8⋊D9, D4.D9, C9⋊Q16, C9×SD16, D4⋊2D9, Q8×D9, SD16⋊D9
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C22×S3, C8.C22, D18, S3×D4, C22×D9, D4.D6, D4×D9, SD16⋊D9
(1 140 32 122 14 131 23 113)(2 141 33 123 15 132 24 114)(3 142 34 124 16 133 25 115)(4 143 35 125 17 134 26 116)(5 144 36 126 18 135 27 117)(6 136 28 118 10 127 19 109)(7 137 29 119 11 128 20 110)(8 138 30 120 12 129 21 111)(9 139 31 121 13 130 22 112)(37 91 55 82 46 100 64 73)(38 92 56 83 47 101 65 74)(39 93 57 84 48 102 66 75)(40 94 58 85 49 103 67 76)(41 95 59 86 50 104 68 77)(42 96 60 87 51 105 69 78)(43 97 61 88 52 106 70 79)(44 98 62 89 53 107 71 80)(45 99 63 90 54 108 72 81)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 37)(7 38)(8 39)(9 40)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 61)(26 62)(27 63)(28 64)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 71)(36 72)(73 127)(74 128)(75 129)(76 130)(77 131)(78 132)(79 133)(80 134)(81 135)(82 136)(83 137)(84 138)(85 139)(86 140)(87 141)(88 142)(89 143)(90 144)(91 118)(92 119)(93 120)(94 121)(95 122)(96 123)(97 124)(98 125)(99 126)(100 109)(101 110)(102 111)(103 112)(104 113)(105 114)(106 115)(107 116)(108 117)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 26)(20 25)(21 24)(22 23)(28 35)(29 34)(30 33)(31 32)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(45 54)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)(73 80)(74 79)(75 78)(76 77)(82 89)(83 88)(84 87)(85 86)(91 98)(92 97)(93 96)(94 95)(100 107)(101 106)(102 105)(103 104)(109 125)(110 124)(111 123)(112 122)(113 121)(114 120)(115 119)(116 118)(117 126)(127 143)(128 142)(129 141)(130 140)(131 139)(132 138)(133 137)(134 136)(135 144)
G:=sub<Sym(144)| (1,140,32,122,14,131,23,113)(2,141,33,123,15,132,24,114)(3,142,34,124,16,133,25,115)(4,143,35,125,17,134,26,116)(5,144,36,126,18,135,27,117)(6,136,28,118,10,127,19,109)(7,137,29,119,11,128,20,110)(8,138,30,120,12,129,21,111)(9,139,31,121,13,130,22,112)(37,91,55,82,46,100,64,73)(38,92,56,83,47,101,65,74)(39,93,57,84,48,102,66,75)(40,94,58,85,49,103,67,76)(41,95,59,86,50,104,68,77)(42,96,60,87,51,105,69,78)(43,97,61,88,52,106,70,79)(44,98,62,89,53,107,71,80)(45,99,63,90,54,108,72,81), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(89,143)(90,144)(91,118)(92,119)(93,120)(94,121)(95,122)(96,123)(97,124)(98,125)(99,126)(100,109)(101,110)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)(73,80)(74,79)(75,78)(76,77)(82,89)(83,88)(84,87)(85,86)(91,98)(92,97)(93,96)(94,95)(100,107)(101,106)(102,105)(103,104)(109,125)(110,124)(111,123)(112,122)(113,121)(114,120)(115,119)(116,118)(117,126)(127,143)(128,142)(129,141)(130,140)(131,139)(132,138)(133,137)(134,136)(135,144)>;
G:=Group( (1,140,32,122,14,131,23,113)(2,141,33,123,15,132,24,114)(3,142,34,124,16,133,25,115)(4,143,35,125,17,134,26,116)(5,144,36,126,18,135,27,117)(6,136,28,118,10,127,19,109)(7,137,29,119,11,128,20,110)(8,138,30,120,12,129,21,111)(9,139,31,121,13,130,22,112)(37,91,55,82,46,100,64,73)(38,92,56,83,47,101,65,74)(39,93,57,84,48,102,66,75)(40,94,58,85,49,103,67,76)(41,95,59,86,50,104,68,77)(42,96,60,87,51,105,69,78)(43,97,61,88,52,106,70,79)(44,98,62,89,53,107,71,80)(45,99,63,90,54,108,72,81), (1,41)(2,42)(3,43)(4,44)(5,45)(6,37)(7,38)(8,39)(9,40)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,61)(26,62)(27,63)(28,64)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,71)(36,72)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,137)(84,138)(85,139)(86,140)(87,141)(88,142)(89,143)(90,144)(91,118)(92,119)(93,120)(94,121)(95,122)(96,123)(97,124)(98,125)(99,126)(100,109)(101,110)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,26)(20,25)(21,24)(22,23)(28,35)(29,34)(30,33)(31,32)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)(73,80)(74,79)(75,78)(76,77)(82,89)(83,88)(84,87)(85,86)(91,98)(92,97)(93,96)(94,95)(100,107)(101,106)(102,105)(103,104)(109,125)(110,124)(111,123)(112,122)(113,121)(114,120)(115,119)(116,118)(117,126)(127,143)(128,142)(129,141)(130,140)(131,139)(132,138)(133,137)(134,136)(135,144) );
G=PermutationGroup([[(1,140,32,122,14,131,23,113),(2,141,33,123,15,132,24,114),(3,142,34,124,16,133,25,115),(4,143,35,125,17,134,26,116),(5,144,36,126,18,135,27,117),(6,136,28,118,10,127,19,109),(7,137,29,119,11,128,20,110),(8,138,30,120,12,129,21,111),(9,139,31,121,13,130,22,112),(37,91,55,82,46,100,64,73),(38,92,56,83,47,101,65,74),(39,93,57,84,48,102,66,75),(40,94,58,85,49,103,67,76),(41,95,59,86,50,104,68,77),(42,96,60,87,51,105,69,78),(43,97,61,88,52,106,70,79),(44,98,62,89,53,107,71,80),(45,99,63,90,54,108,72,81)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,37),(7,38),(8,39),(9,40),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,61),(26,62),(27,63),(28,64),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,71),(36,72),(73,127),(74,128),(75,129),(76,130),(77,131),(78,132),(79,133),(80,134),(81,135),(82,136),(83,137),(84,138),(85,139),(86,140),(87,141),(88,142),(89,143),(90,144),(91,118),(92,119),(93,120),(94,121),(95,122),(96,123),(97,124),(98,125),(99,126),(100,109),(101,110),(102,111),(103,112),(104,113),(105,114),(106,115),(107,116),(108,117)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,26),(20,25),(21,24),(22,23),(28,35),(29,34),(30,33),(31,32),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(45,54),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72),(73,80),(74,79),(75,78),(76,77),(82,89),(83,88),(84,87),(85,86),(91,98),(92,97),(93,96),(94,95),(100,107),(101,106),(102,105),(103,104),(109,125),(110,124),(111,123),(112,122),(113,121),(114,120),(115,119),(116,118),(117,126),(127,143),(128,142),(129,141),(130,140),(131,139),(132,138),(133,137),(134,136),(135,144)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 36A | 36B | 36C | 36D | 36E | 36F | 72A | ··· | 72F |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 36 | 36 | 36 | 36 | 36 | 36 | 72 | ··· | 72 |
size | 1 | 1 | 4 | 18 | 2 | 2 | 4 | 18 | 36 | 36 | 2 | 8 | 4 | 36 | 2 | 2 | 2 | 4 | 8 | 2 | 2 | 2 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | + | - |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | D6 | D9 | D18 | D18 | D18 | C8.C22 | S3×D4 | D4.D6 | D4×D9 | SD16⋊D9 |
kernel | SD16⋊D9 | Dic36 | C8⋊D9 | D4.D9 | C9⋊Q16 | C9×SD16 | D4⋊2D9 | Q8×D9 | C3×SD16 | Dic9 | D18 | C24 | C3×D4 | C3×Q8 | SD16 | C8 | D4 | Q8 | C9 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 3 | 6 |
Matrix representation of SD16⋊D9 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 66 | 13 |
0 | 0 | 0 | 0 | 13 | 7 |
0 | 0 | 13 | 7 | 0 | 0 |
0 | 0 | 7 | 60 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
42 | 45 | 0 | 0 | 0 | 0 |
28 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
42 | 70 | 0 | 0 | 0 | 0 |
28 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,13,7,0,0,0,0,7,60,0,0,66,13,0,0,0,0,13,7,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[42,28,0,0,0,0,45,70,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[42,28,0,0,0,0,70,31,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;
SD16⋊D9 in GAP, Magma, Sage, TeX
{\rm SD}_{16}\rtimes D_9
% in TeX
G:=Group("SD16:D9");
// GroupNames label
G:=SmallGroup(288,125);
// by ID
G=gap.SmallGroup(288,125);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,422,135,346,185,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^9=d^2=1,b*a*b=a^3,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations