Extensions 1→N→G→Q→1 with N=C8 and Q=D18

Direct product G=N×Q with N=C8 and Q=D18
dρLabelID
C2×C8×D9144C2xC8xD9288,110

Semidirect products G=N:Q with N=C8 and Q=D18
extensionφ:Q→Aut NdρLabelID
C81D18 = C8⋊D18φ: D18/C9C22 ⊆ Aut C8724+C8:1D18288,118
C82D18 = D8⋊D9φ: D18/C9C22 ⊆ Aut C8724C8:2D18288,121
C83D18 = D72⋊C2φ: D18/C9C22 ⊆ Aut C8724+C8:3D18288,124
C84D18 = D8×D9φ: D18/D9C2 ⊆ Aut C8724+C8:4D18288,120
C85D18 = SD16×D9φ: D18/D9C2 ⊆ Aut C8724C8:5D18288,123
C86D18 = M4(2)×D9φ: D18/D9C2 ⊆ Aut C8724C8:6D18288,116
C87D18 = C2×D72φ: D18/C18C2 ⊆ Aut C8144C8:7D18288,114
C88D18 = C2×C72⋊C2φ: D18/C18C2 ⊆ Aut C8144C8:8D18288,113
C89D18 = C2×C8⋊D9φ: D18/C18C2 ⊆ Aut C8144C8:9D18288,111

Non-split extensions G=N.Q with N=C8 and Q=D18
extensionφ:Q→Aut NdρLabelID
C8.1D18 = C8.D18φ: D18/C9C22 ⊆ Aut C81444-C8.1D18288,119
C8.2D18 = SD16⋊D9φ: D18/C9C22 ⊆ Aut C81444-C8.2D18288,125
C8.3D18 = Q16⋊D9φ: D18/C9C22 ⊆ Aut C81444C8.3D18288,128
C8.4D18 = C9⋊D16φ: D18/D9C2 ⊆ Aut C81444+C8.4D18288,33
C8.5D18 = D8.D9φ: D18/D9C2 ⊆ Aut C81444-C8.5D18288,34
C8.6D18 = C9⋊SD32φ: D18/D9C2 ⊆ Aut C81444+C8.6D18288,35
C8.7D18 = C9⋊Q32φ: D18/D9C2 ⊆ Aut C82884-C8.7D18288,36
C8.8D18 = D83D9φ: D18/D9C2 ⊆ Aut C81444-C8.8D18288,122
C8.9D18 = Q16×D9φ: D18/D9C2 ⊆ Aut C81444-C8.9D18288,127
C8.10D18 = D725C2φ: D18/D9C2 ⊆ Aut C81444+C8.10D18288,129
C8.11D18 = SD163D9φ: D18/D9C2 ⊆ Aut C81444C8.11D18288,126
C8.12D18 = D36.C4φ: D18/D9C2 ⊆ Aut C81444C8.12D18288,117
C8.13D18 = D144φ: D18/C18C2 ⊆ Aut C81442+C8.13D18288,6
C8.14D18 = C144⋊C2φ: D18/C18C2 ⊆ Aut C81442C8.14D18288,7
C8.15D18 = Dic72φ: D18/C18C2 ⊆ Aut C82882-C8.15D18288,8
C8.16D18 = C2×Dic36φ: D18/C18C2 ⊆ Aut C8288C8.16D18288,109
C8.17D18 = D727C2φ: D18/C18C2 ⊆ Aut C81442C8.17D18288,115
C8.18D18 = C16×D9central extension (φ=1)1442C8.18D18288,4
C8.19D18 = C16⋊D9central extension (φ=1)1442C8.19D18288,5
C8.20D18 = C2×C9⋊C16central extension (φ=1)288C8.20D18288,18
C8.21D18 = C36.C8central extension (φ=1)1442C8.21D18288,19
C8.22D18 = D36.2C4central extension (φ=1)1442C8.22D18288,112

׿
×
𝔽