Extensions 1→N→G→Q→1 with N=C3 and Q=C2×D42S3

Direct product G=N×Q with N=C3 and Q=C2×D42S3
dρLabelID
C6×D42S348C6xD4:2S3288,993

Semidirect products G=N:Q with N=C3 and Q=C2×D42S3
extensionφ:Q→Aut NdρLabelID
C31(C2×D42S3) = C2×D12⋊S3φ: C2×D42S3/C2×Dic6C2 ⊆ Aut C348C3:1(C2xD4:2S3)288,944
C32(C2×D42S3) = C2×D125S3φ: C2×D42S3/S3×C2×C4C2 ⊆ Aut C396C3:2(C2xD4:2S3)288,943
C33(C2×D42S3) = S3×D42S3φ: C2×D42S3/D42S3C2 ⊆ Aut C3488-C3:3(C2xD4:2S3)288,959
C34(C2×D42S3) = C2×D6.3D6φ: C2×D42S3/C22×Dic3C2 ⊆ Aut C348C3:4(C2xD4:2S3)288,970
C35(C2×D42S3) = C2×D6.4D6φ: C2×D42S3/C2×C3⋊D4C2 ⊆ Aut C348C3:5(C2xD4:2S3)288,971
C36(C2×D42S3) = C2×C12.D6φ: C2×D42S3/C6×D4C2 ⊆ Aut C3144C3:6(C2xD4:2S3)288,1008

Non-split extensions G=N.Q with N=C3 and Q=C2×D42S3
extensionφ:Q→Aut NdρLabelID
C3.(C2×D42S3) = C2×D42D9φ: C2×D42S3/C6×D4C2 ⊆ Aut C3144C3.(C2xD4:2S3)288,357

׿
×
𝔽