Copied to
clipboard

G = C2×D42D9order 288 = 25·32

Direct product of C2 and D42D9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D42D9, D45D18, C18.6C24, C36.20C23, D18.2C23, C23.24D18, Dic187C22, Dic9.3C23, (C2×D4)⋊8D9, (D4×C18)⋊6C2, C182(C4○D4), (C6×D4).13S3, (C3×D4).36D6, (C2×C12).99D6, (C2×C4).60D18, (D4×C9)⋊6C22, (C4×D9)⋊4C22, C9⋊D42C22, C2.7(C23×D9), (C2×C18).1C23, C6.43(S3×C23), C4.20(C22×D9), (C22×C6).59D6, (C2×Dic18)⋊12C2, (C2×C36).48C22, C12.60(C22×S3), (C2×Dic9)⋊9C22, (C22×Dic9)⋊8C2, C6.90(D42S3), C22.1(C22×D9), (C22×C18).23C22, (C22×D9).29C22, (C2×C4×D9)⋊4C2, C92(C2×C4○D4), C3.(C2×D42S3), (C2×C9⋊D4)⋊10C2, (C2×C6).8(C22×S3), SmallGroup(288,357)

Series: Derived Chief Lower central Upper central

C1C18 — C2×D42D9
C1C3C9C18D18C22×D9C2×C4×D9 — C2×D42D9
C9C18 — C2×D42D9
C1C22C2×D4

Generators and relations for C2×D42D9
 G = < a,b,c,d,e | a2=b4=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 872 in 246 conjugacy classes, 108 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, D9, C18, C18, C18, Dic6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C2×C4○D4, Dic9, C36, D18, D18, C2×C18, C2×C18, C2×C18, C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C2×C3⋊D4, C6×D4, Dic18, C4×D9, C2×Dic9, C2×Dic9, C9⋊D4, C2×C36, D4×C9, C22×D9, C22×C18, C2×D42S3, C2×Dic18, C2×C4×D9, D42D9, C22×Dic9, C2×C9⋊D4, D4×C18, C2×D42D9
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, D9, C22×S3, C2×C4○D4, D18, D42S3, S3×C23, C22×D9, C2×D42S3, D42D9, C23×D9, C2×D42D9

Smallest permutation representation of C2×D42D9
On 144 points
Generators in S144
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)
(1 109 10 118)(2 110 11 119)(3 111 12 120)(4 112 13 121)(5 113 14 122)(6 114 15 123)(7 115 16 124)(8 116 17 125)(9 117 18 126)(19 127 28 136)(20 128 29 137)(21 129 30 138)(22 130 31 139)(23 131 32 140)(24 132 33 141)(25 133 34 142)(26 134 35 143)(27 135 36 144)(37 82 46 73)(38 83 47 74)(39 84 48 75)(40 85 49 76)(41 86 50 77)(42 87 51 78)(43 88 52 79)(44 89 53 80)(45 90 54 81)(55 100 64 91)(56 101 65 92)(57 102 66 93)(58 103 67 94)(59 104 68 95)(60 105 69 96)(61 106 70 97)(62 107 71 98)(63 108 72 99)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 97)(8 98)(9 99)(10 100)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 73)(20 74)(21 75)(22 76)(23 77)(24 78)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 136)(38 137)(39 138)(40 139)(41 140)(42 141)(43 142)(44 143)(45 144)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 109)(65 110)(66 111)(67 112)(68 113)(69 114)(70 115)(71 116)(72 117)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 9)(2 8)(3 7)(4 6)(10 18)(11 17)(12 16)(13 15)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 28)(37 45)(38 44)(39 43)(40 42)(46 54)(47 53)(48 52)(49 51)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(73 81)(74 80)(75 79)(76 78)(82 90)(83 89)(84 88)(85 87)(91 108)(92 107)(93 106)(94 105)(95 104)(96 103)(97 102)(98 101)(99 100)(109 117)(110 116)(111 115)(112 114)(118 126)(119 125)(120 124)(121 123)(127 144)(128 143)(129 142)(130 141)(131 140)(132 139)(133 138)(134 137)(135 136)

G:=sub<Sym(144)| (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,109,10,118)(2,110,11,119)(3,111,12,120)(4,112,13,121)(5,113,14,122)(6,114,15,123)(7,115,16,124)(8,116,17,125)(9,117,18,126)(19,127,28,136)(20,128,29,137)(21,129,30,138)(22,130,31,139)(23,131,32,140)(24,132,33,141)(25,133,34,142)(26,134,35,143)(27,135,36,144)(37,82,46,73)(38,83,47,74)(39,84,48,75)(40,85,49,76)(41,86,50,77)(42,87,51,78)(43,88,52,79)(44,89,53,80)(45,90,54,81)(55,100,64,91)(56,101,65,92)(57,102,66,93)(58,103,67,94)(59,104,68,95)(60,105,69,96)(61,106,70,97)(62,107,71,98)(63,108,72,99), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,73)(20,74)(21,75)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,136)(38,137)(39,138)(40,139)(41,140)(42,141)(43,142)(44,143)(45,144)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(37,45)(38,44)(39,43)(40,42)(46,54)(47,53)(48,52)(49,51)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(73,81)(74,80)(75,79)(76,78)(82,90)(83,89)(84,88)(85,87)(91,108)(92,107)(93,106)(94,105)(95,104)(96,103)(97,102)(98,101)(99,100)(109,117)(110,116)(111,115)(112,114)(118,126)(119,125)(120,124)(121,123)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139)(133,138)(134,137)(135,136)>;

G:=Group( (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,109,10,118)(2,110,11,119)(3,111,12,120)(4,112,13,121)(5,113,14,122)(6,114,15,123)(7,115,16,124)(8,116,17,125)(9,117,18,126)(19,127,28,136)(20,128,29,137)(21,129,30,138)(22,130,31,139)(23,131,32,140)(24,132,33,141)(25,133,34,142)(26,134,35,143)(27,135,36,144)(37,82,46,73)(38,83,47,74)(39,84,48,75)(40,85,49,76)(41,86,50,77)(42,87,51,78)(43,88,52,79)(44,89,53,80)(45,90,54,81)(55,100,64,91)(56,101,65,92)(57,102,66,93)(58,103,67,94)(59,104,68,95)(60,105,69,96)(61,106,70,97)(62,107,71,98)(63,108,72,99), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,97)(8,98)(9,99)(10,100)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,73)(20,74)(21,75)(22,76)(23,77)(24,78)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,136)(38,137)(39,138)(40,139)(41,140)(42,141)(43,142)(44,143)(45,144)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(37,45)(38,44)(39,43)(40,42)(46,54)(47,53)(48,52)(49,51)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(73,81)(74,80)(75,79)(76,78)(82,90)(83,89)(84,88)(85,87)(91,108)(92,107)(93,106)(94,105)(95,104)(96,103)(97,102)(98,101)(99,100)(109,117)(110,116)(111,115)(112,114)(118,126)(119,125)(120,124)(121,123)(127,144)(128,143)(129,142)(130,141)(131,140)(132,139)(133,138)(134,137)(135,136) );

G=PermutationGroup([[(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)], [(1,109,10,118),(2,110,11,119),(3,111,12,120),(4,112,13,121),(5,113,14,122),(6,114,15,123),(7,115,16,124),(8,116,17,125),(9,117,18,126),(19,127,28,136),(20,128,29,137),(21,129,30,138),(22,130,31,139),(23,131,32,140),(24,132,33,141),(25,133,34,142),(26,134,35,143),(27,135,36,144),(37,82,46,73),(38,83,47,74),(39,84,48,75),(40,85,49,76),(41,86,50,77),(42,87,51,78),(43,88,52,79),(44,89,53,80),(45,90,54,81),(55,100,64,91),(56,101,65,92),(57,102,66,93),(58,103,67,94),(59,104,68,95),(60,105,69,96),(61,106,70,97),(62,107,71,98),(63,108,72,99)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,97),(8,98),(9,99),(10,100),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,73),(20,74),(21,75),(22,76),(23,77),(24,78),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,136),(38,137),(39,138),(40,139),(41,140),(42,141),(43,142),(44,143),(45,144),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,109),(65,110),(66,111),(67,112),(68,113),(69,114),(70,115),(71,116),(72,117)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,9),(2,8),(3,7),(4,6),(10,18),(11,17),(12,16),(13,15),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,28),(37,45),(38,44),(39,43),(40,42),(46,54),(47,53),(48,52),(49,51),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(73,81),(74,80),(75,79),(76,78),(82,90),(83,89),(84,88),(85,87),(91,108),(92,107),(93,106),(94,105),(95,104),(96,103),(97,102),(98,101),(99,100),(109,117),(110,116),(111,115),(112,114),(118,126),(119,125),(120,124),(121,123),(127,144),(128,143),(129,142),(130,141),(131,140),(132,139),(133,138),(134,137),(135,136)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222222344444444446666666999121218···1818···1836···36
size1111222218182229999181818182224444222442···24···44···4

60 irreducible representations

dim111111122222222244
type+++++++++++++++--
imageC1C2C2C2C2C2C2S3D6D6D6C4○D4D9D18D18D18D42S3D42D9
kernelC2×D42D9C2×Dic18C2×C4×D9D42D9C22×Dic9C2×C9⋊D4D4×C18C6×D4C2×C12C3×D4C22×C6C18C2×D4C2×C4D4C23C6C2
# reps1118221114243312626

Matrix representation of C2×D42D9 in GL5(𝔽37)

360000
01000
00100
00010
00001
,
360000
036000
003600
000310
000186
,
360000
036000
003600
0003624
00001
,
10000
0111700
0203100
00010
00001
,
360000
0111700
062600
00010
0003436

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,31,18,0,0,0,0,6],[36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,24,1],[1,0,0,0,0,0,11,20,0,0,0,17,31,0,0,0,0,0,1,0,0,0,0,0,1],[36,0,0,0,0,0,11,6,0,0,0,17,26,0,0,0,0,0,1,34,0,0,0,0,36] >;

C2×D42D9 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes_2D_9
% in TeX

G:=Group("C2xD4:2D9");
// GroupNames label

G:=SmallGroup(288,357);
// by ID

G=gap.SmallGroup(288,357);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,185,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽