Copied to
clipboard

G = C6xD4:2S3order 288 = 25·32

Direct product of C6 and D4:2S3

direct product, metabelian, supersoluble, monomial

Aliases: C6xD4:2S3, C62.269C23, D4:5(S3xC6), (C6xD4):6C6, (C6xD4):17S3, (C3xD4):23D6, Dic6:7(C2xC6), C6.6(C23xC6), (C6xDic6):22C2, (C2xDic6):12C6, (C2xC12).334D6, C23.29(S3xC6), C6.74(S3xC23), (C3xC6).43C24, D6.2(C22xC6), (S3xC12):20C22, (S3xC6).29C23, C12.20(C22xC6), (C22xC6).109D6, C12.171(C22xS3), (C6xC12).163C22, (C3xC12).121C23, (C3xDic6):32C22, (C6xDic3):34C22, (C22xDic3):11C6, (D4xC32):19C22, (C2xC62).83C22, Dic3.3(C22xC6), (C3xDic3).30C23, (S3xC2xC4):4C6, (D4xC3xC6):10C2, C3:2(C6xC4oD4), C6:2(C3xC4oD4), C4.20(S3xC2xC6), (S3xC2xC12):12C2, (C4xS3):4(C2xC6), (C2xD4):8(C3xS3), (C3xD4):6(C2xC6), C3:D4:2(C2xC6), C2.7(S3xC22xC6), C22.1(S3xC2xC6), (C3xC6):9(C4oD4), (C6xC3:D4):24C2, (C2xC3:D4):10C6, (C2xC4).60(S3xC6), (Dic3xC2xC6):19C2, C32:15(C2xC4oD4), (C2xC12).45(C2xC6), (C2xDic3):9(C2xC6), (C2xC6).1(C22xC6), (C3xC3:D4):16C22, (S3xC2xC6).110C22, (C22xC6).34(C2xC6), (C2xC6).20(C22xS3), (C22xS3).30(C2xC6), SmallGroup(288,993)

Series: Derived Chief Lower central Upper central

C1C6 — C6xD4:2S3
C1C3C6C3xC6S3xC6S3xC2xC6S3xC2xC12 — C6xD4:2S3
C3C6 — C6xD4:2S3
C1C2xC6C6xD4

Generators and relations for C6xD4:2S3
 G = < a,b,c,d,e | a6=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 682 in 355 conjugacy classes, 178 normal (30 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C32, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xC6, C22xC6, C2xC4oD4, C3xDic3, C3xC12, S3xC6, S3xC6, C62, C62, C62, C2xDic6, S3xC2xC4, D4:2S3, C22xDic3, C2xC3:D4, C22xC12, C6xD4, C6xD4, C6xQ8, C3xC4oD4, C3xDic6, S3xC12, C6xDic3, C6xDic3, C3xC3:D4, C6xC12, D4xC32, S3xC2xC6, C2xC62, C2xD4:2S3, C6xC4oD4, C6xDic6, S3xC2xC12, C3xD4:2S3, Dic3xC2xC6, C6xC3:D4, D4xC3xC6, C6xD4:2S3
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C24, C3xS3, C22xS3, C22xC6, C2xC4oD4, S3xC6, D4:2S3, C3xC4oD4, S3xC23, C23xC6, S3xC2xC6, C2xD4:2S3, C6xC4oD4, C3xD4:2S3, S3xC22xC6, C6xD4:2S3

Smallest permutation representation of C6xD4:2S3
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 12 23 28)(2 7 24 29)(3 8 19 30)(4 9 20 25)(5 10 21 26)(6 11 22 27)(13 33 37 46)(14 34 38 47)(15 35 39 48)(16 36 40 43)(17 31 41 44)(18 32 42 45)
(7 29)(8 30)(9 25)(10 26)(11 27)(12 28)(31 44)(32 45)(33 46)(34 47)(35 48)(36 43)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 42)(8 37)(9 38)(10 39)(11 40)(12 41)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(19 46)(20 47)(21 48)(22 43)(23 44)(24 45)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,12,23,28)(2,7,24,29)(3,8,19,30)(4,9,20,25)(5,10,21,26)(6,11,22,27)(13,33,37,46)(14,34,38,47)(15,35,39,48)(16,36,40,43)(17,31,41,44)(18,32,42,45), (7,29)(8,30)(9,25)(10,26)(11,27)(12,28)(31,44)(32,45)(33,46)(34,47)(35,48)(36,43), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,12,23,28)(2,7,24,29)(3,8,19,30)(4,9,20,25)(5,10,21,26)(6,11,22,27)(13,33,37,46)(14,34,38,47)(15,35,39,48)(16,36,40,43)(17,31,41,44)(18,32,42,45), (7,29)(8,30)(9,25)(10,26)(11,27)(12,28)(31,44)(32,45)(33,46)(34,47)(35,48)(36,43), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,12,23,28),(2,7,24,29),(3,8,19,30),(4,9,20,25),(5,10,21,26),(6,11,22,27),(13,33,37,46),(14,34,38,47),(15,35,39,48),(16,36,40,43),(17,31,41,44),(18,32,42,45)], [(7,29),(8,30),(9,25),(10,26),(11,27),(12,28),(31,44),(32,45),(33,46),(34,47),(35,48),(36,43)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,42),(8,37),(9,38),(10,39),(11,40),(12,41),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(19,46),(20,47),(21,48),(22,43),(23,44),(24,45)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C3D3E4A4B4C4D4E4F4G4H4I4J6A···6F6G···6W6X···6AI6AJ6AK6AL6AM12A12B12C12D12E···12L12M···12R12S···12Z
order12222222223333344444444446···66···66···666661212121212···1212···1212···12
size11112222661122222333366661···12···24···4666622223···34···46···6

90 irreducible representations

dim11111111111111222222222244
type+++++++++++-
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6S3D6D6D6C4oD4C3xS3S3xC6S3xC6S3xC6C3xC4oD4D4:2S3C3xD4:2S3
kernelC6xD4:2S3C6xDic6S3xC2xC12C3xD4:2S3Dic3xC2xC6C6xC3:D4D4xC3xC6C2xD4:2S3C2xDic6S3xC2xC4D4:2S3C22xDic3C2xC3:D4C6xD4C6xD4C2xC12C3xD4C22xC6C3xC6C2xD4C2xC4D4C23C6C6C2
# reps111822122216442114242284824

Matrix representation of C6xD4:2S3 in GL4(F13) generated by

10000
01000
0010
0001
,
12000
01200
00012
0010
,
1000
0100
0010
00012
,
3000
0900
0010
0001
,
01200
12000
0005
0080
G:=sub<GL(4,GF(13))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,0,1,0,0,12,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12],[3,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[0,12,0,0,12,0,0,0,0,0,0,8,0,0,5,0] >;

C6xD4:2S3 in GAP, Magma, Sage, TeX

C_6\times D_4\rtimes_2S_3
% in TeX

G:=Group("C6xD4:2S3");
// GroupNames label

G:=SmallGroup(288,993);
// by ID

G=gap.SmallGroup(288,993);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-3,268,1571,409,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<