Extensions 1→N→G→Q→1 with N=C3 and Q=D46D6

Direct product G=N×Q with N=C3 and Q=D46D6
dρLabelID
C3×D46D6244C3xD4:6D6288,994

Semidirect products G=N:Q with N=C3 and Q=D46D6
extensionφ:Q→Aut NdρLabelID
C31(D46D6) = D1224D6φ: D46D6/C4○D12C2 ⊆ Aut C3484C3:1(D4:6D6)288,955
C32(D46D6) = D1212D6φ: D46D6/S3×D4C2 ⊆ Aut C3488-C3:2(D4:6D6)288,961
C33(D46D6) = D1213D6φ: D46D6/D42S3C2 ⊆ Aut C3248+C3:3(D4:6D6)288,962
C34(D46D6) = C32⋊2+ 1+4φ: D46D6/C2×C3⋊D4C2 ⊆ Aut C3244C3:4(D4:6D6)288,978
C35(D46D6) = C3282+ 1+4φ: D46D6/C6×D4C2 ⊆ Aut C372C3:5(D4:6D6)288,1009

Non-split extensions G=N.Q with N=C3 and Q=D46D6
extensionφ:Q→Aut NdρLabelID
C3.(D46D6) = D46D18φ: D46D6/C6×D4C2 ⊆ Aut C3724C3.(D4:6D6)288,358

׿
×
𝔽