Copied to
clipboard

G = D12:24D6order 288 = 25·32

8th semidirect product of D12 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial

Aliases: D12:24D6, Dic6:23D6, C32:12+ 1+4, C62.139C23, (C4xS3):1D6, (C2xC12):5D6, C4oD12:8S3, (S3xD12):7C2, C3:D4:12D6, (C6xD12):17C2, (C2xD12):14S3, C3:1(D4oD12), (C6xC12):7C22, (C22xS3):5D6, D12:5S3:8C2, D12:S3:8C2, D6:D6:10C2, C3:1(D4:6D6), (S3xC12):2C22, (S3xC6).6C23, C6.14(S3xC23), (C3xC6).14C24, D6.7(C22xS3), C12.59D6:9C2, D6:S3:3C22, C3:D12:1C22, (C3xD12):31C22, (S3xDic3):1C22, C32:7D4:7C22, C12:S3:23C22, C12.109(C22xS3), (C3xC12).119C23, (C3xDic6):30C22, C3:Dic3.18C23, (C3xDic3).9C23, Dic3.6(C22xS3), C32:4Q8:22C22, (C2xC4):3S32, C4.80(C2xS32), (C2xS32):2C22, (S3xC3:D4):1C2, (S3xC2xC6):8C22, C22.8(C2xS32), (C4xC3:S3):1C22, C2.16(C22xS32), (C3xC4oD12):13C2, (C3xC3:D4):8C22, (C2xC3:S3).20C23, (C2xC6).155(C22xS3), SmallGroup(288,955)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12:24D6
C1C3C32C3xC6S3xC6C2xS32S3xC3:D4 — D12:24D6
C32C3xC6 — D12:24D6
C1C2C2xC4

Generators and relations for D12:24D6
 G = < a,b,c,d | a12=b2=c6=d2=1, bab=cac-1=a-1, dad=a5, cbc-1=a4b, dbd=a10b, dcd=c-1 >

Subgroups: 1434 in 352 conjugacy classes, 108 normal (36 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xD4, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, Dic6, C4xS3, C4xS3, D12, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xC6, 2+ 1+4, C3xDic3, C3:Dic3, C3xC12, S32, S3xC6, S3xC6, C2xC3:S3, C62, C2xD12, C2xD12, C4oD12, C4oD12, S3xD4, D4:2S3, Q8:3S3, C2xC3:D4, C6xD4, C3xC4oD4, S3xDic3, D6:S3, C3:D12, C3xDic6, S3xC12, C3xD12, C3xD12, C3xC3:D4, C32:4Q8, C4xC3:S3, C12:S3, C32:7D4, C6xC12, C2xS32, S3xC2xC6, D4:6D6, D4oD12, D12:5S3, D12:S3, S3xD12, D6:D6, S3xC3:D4, C6xD12, C3xC4oD12, C12.59D6, D12:24D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2+ 1+4, S32, S3xC23, C2xS32, D4:6D6, D4oD12, C22xS32, D12:24D6

Smallest permutation representation of D12:24D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 13)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(25 45)(26 44)(27 43)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 48)(35 47)(36 46)
(1 38 5 46 9 42)(2 37 6 45 10 41)(3 48 7 44 11 40)(4 47 8 43 12 39)(13 28 21 32 17 36)(14 27 22 31 18 35)(15 26 23 30 19 34)(16 25 24 29 20 33)
(1 35)(2 28)(3 33)(4 26)(5 31)(6 36)(7 29)(8 34)(9 27)(10 32)(11 25)(12 30)(13 37)(14 42)(15 47)(16 40)(17 45)(18 38)(19 43)(20 48)(21 41)(22 46)(23 39)(24 44)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46), (1,38,5,46,9,42)(2,37,6,45,10,41)(3,48,7,44,11,40)(4,47,8,43,12,39)(13,28,21,32,17,36)(14,27,22,31,18,35)(15,26,23,30,19,34)(16,25,24,29,20,33), (1,35)(2,28)(3,33)(4,26)(5,31)(6,36)(7,29)(8,34)(9,27)(10,32)(11,25)(12,30)(13,37)(14,42)(15,47)(16,40)(17,45)(18,38)(19,43)(20,48)(21,41)(22,46)(23,39)(24,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,13)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(25,45)(26,44)(27,43)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,48)(35,47)(36,46), (1,38,5,46,9,42)(2,37,6,45,10,41)(3,48,7,44,11,40)(4,47,8,43,12,39)(13,28,21,32,17,36)(14,27,22,31,18,35)(15,26,23,30,19,34)(16,25,24,29,20,33), (1,35)(2,28)(3,33)(4,26)(5,31)(6,36)(7,29)(8,34)(9,27)(10,32)(11,25)(12,30)(13,37)(14,42)(15,47)(16,40)(17,45)(18,38)(19,43)(20,48)(21,41)(22,46)(23,39)(24,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,13),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(25,45),(26,44),(27,43),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,48),(35,47),(36,46)], [(1,38,5,46,9,42),(2,37,6,45,10,41),(3,48,7,44,11,40),(4,47,8,43,12,39),(13,28,21,32,17,36),(14,27,22,31,18,35),(15,26,23,30,19,34),(16,25,24,29,20,33)], [(1,35),(2,28),(3,33),(4,26),(5,31),(6,36),(7,29),(8,34),(9,27),(10,32),(11,25),(12,30),(13,37),(14,42),(15,47),(16,40),(17,45),(18,38),(19,43),(20,48),(21,41),(22,46),(23,39),(24,44)]])

45 conjugacy classes

class 1 2A2B2C···2H2I2J3A3B3C4A4B4C4D4E4F6A6B6C6D6E6F6G6H6I···6N12A12B12C···12I12J12K
order1222···222333444444666666666···6121212···121212
size1126···61818224226618182222444412···12224···41212

45 irreducible representations

dim111111111222222224444444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3S3D6D6D6D6D6D62+ 1+4S32C2xS32C2xS32D4:6D6D4oD12D12:24D6
kernelD12:24D6D12:5S3D12:S3S3xD12D6:D6S3xC3:D4C6xD12C3xC4oD12C12.59D6C2xD12C4oD12Dic6C4xS3D12C3:D4C2xC12C22xS3C32C2xC4C4C22C3C3C1
# reps122224111111252221121224

Matrix representation of D12:24D6 in GL4(F13) generated by

5500
8000
0088
0050
,
0088
0005
5500
0800
,
00103
0063
6300
10700
,
6300
10700
00103
0063
G:=sub<GL(4,GF(13))| [5,8,0,0,5,0,0,0,0,0,8,5,0,0,8,0],[0,0,5,0,0,0,5,8,8,0,0,0,8,5,0,0],[0,0,6,10,0,0,3,7,10,6,0,0,3,3,0,0],[6,10,0,0,3,7,0,0,0,0,10,6,0,0,3,3] >;

D12:24D6 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{24}D_6
% in TeX

G:=Group("D12:24D6");
// GroupNames label

G:=SmallGroup(288,955);
// by ID

G=gap.SmallGroup(288,955);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^4*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<