Extensions 1→N→G→Q→1 with N=C8 and Q=S3xC6

Direct product G=NxQ with N=C8 and Q=S3xC6
dρLabelID
S3xC2xC2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C8 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C8:1(S3xC6) = C3xC8:D6φ: S3xC6/C32C22 ⊆ Aut C8484C8:1(S3xC6)288,679
C8:2(S3xC6) = C3xD8:S3φ: S3xC6/C32C22 ⊆ Aut C8484C8:2(S3xC6)288,682
C8:3(S3xC6) = C3xQ8:3D6φ: S3xC6/C32C22 ⊆ Aut C8484C8:3(S3xC6)288,685
C8:4(S3xC6) = C3xS3xD8φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8:4(S3xC6)288,681
C8:5(S3xC6) = C3xS3xSD16φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8:5(S3xC6)288,684
C8:6(S3xC6) = C3xS3xM4(2)φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8:6(S3xC6)288,677
C8:7(S3xC6) = C6xD24φ: S3xC6/C3xC6C2 ⊆ Aut C896C8:7(S3xC6)288,674
C8:8(S3xC6) = C6xC24:C2φ: S3xC6/C3xC6C2 ⊆ Aut C896C8:8(S3xC6)288,673
C8:9(S3xC6) = C6xC8:S3φ: S3xC6/C3xC6C2 ⊆ Aut C896C8:9(S3xC6)288,671

Non-split extensions G=N.Q with N=C8 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C8.1(S3xC6) = C3xC8.D6φ: S3xC6/C32C22 ⊆ Aut C8484C8.1(S3xC6)288,680
C8.2(S3xC6) = C3xD4.D6φ: S3xC6/C32C22 ⊆ Aut C8484C8.2(S3xC6)288,686
C8.3(S3xC6) = C3xQ16:S3φ: S3xC6/C32C22 ⊆ Aut C8964C8.3(S3xC6)288,689
C8.4(S3xC6) = C3xC3:D16φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8.4(S3xC6)288,260
C8.5(S3xC6) = C3xD8.S3φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8.5(S3xC6)288,261
C8.6(S3xC6) = C3xC8.6D6φ: S3xC6/C3xS3C2 ⊆ Aut C8964C8.6(S3xC6)288,262
C8.7(S3xC6) = C3xC3:Q32φ: S3xC6/C3xS3C2 ⊆ Aut C8964C8.7(S3xC6)288,263
C8.8(S3xC6) = C3xD8:3S3φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8.8(S3xC6)288,683
C8.9(S3xC6) = C3xS3xQ16φ: S3xC6/C3xS3C2 ⊆ Aut C8964C8.9(S3xC6)288,688
C8.10(S3xC6) = C3xD24:C2φ: S3xC6/C3xS3C2 ⊆ Aut C8964C8.10(S3xC6)288,690
C8.11(S3xC6) = C3xQ8.7D6φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8.11(S3xC6)288,687
C8.12(S3xC6) = C3xD12.C4φ: S3xC6/C3xS3C2 ⊆ Aut C8484C8.12(S3xC6)288,678
C8.13(S3xC6) = C3xD48φ: S3xC6/C3xC6C2 ⊆ Aut C8962C8.13(S3xC6)288,233
C8.14(S3xC6) = C3xC48:C2φ: S3xC6/C3xC6C2 ⊆ Aut C8962C8.14(S3xC6)288,234
C8.15(S3xC6) = C3xDic24φ: S3xC6/C3xC6C2 ⊆ Aut C8962C8.15(S3xC6)288,235
C8.16(S3xC6) = C6xDic12φ: S3xC6/C3xC6C2 ⊆ Aut C896C8.16(S3xC6)288,676
C8.17(S3xC6) = C3xC4oD24φ: S3xC6/C3xC6C2 ⊆ Aut C8482C8.17(S3xC6)288,675
C8.18(S3xC6) = C3xC8oD12φ: S3xC6/C3xC6C2 ⊆ Aut C8482C8.18(S3xC6)288,672
C8.19(S3xC6) = S3xC48central extension (φ=1)962C8.19(S3xC6)288,231
C8.20(S3xC6) = C3xD6.C8central extension (φ=1)962C8.20(S3xC6)288,232
C8.21(S3xC6) = C6xC3:C16central extension (φ=1)96C8.21(S3xC6)288,245
C8.22(S3xC6) = C3xC12.C8central extension (φ=1)482C8.22(S3xC6)288,246

׿
x
:
Z
F
o
wr
Q
<