Extensions 1→N→G→Q→1 with N=C8 and Q=S3×C6

Direct product G=N×Q with N=C8 and Q=S3×C6
dρLabelID
S3×C2×C2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C8 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C81(S3×C6) = C3×C8⋊D6φ: S3×C6/C32C22 ⊆ Aut C8484C8:1(S3xC6)288,679
C82(S3×C6) = C3×D8⋊S3φ: S3×C6/C32C22 ⊆ Aut C8484C8:2(S3xC6)288,682
C83(S3×C6) = C3×Q83D6φ: S3×C6/C32C22 ⊆ Aut C8484C8:3(S3xC6)288,685
C84(S3×C6) = C3×S3×D8φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8:4(S3xC6)288,681
C85(S3×C6) = C3×S3×SD16φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8:5(S3xC6)288,684
C86(S3×C6) = C3×S3×M4(2)φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8:6(S3xC6)288,677
C87(S3×C6) = C6×D24φ: S3×C6/C3×C6C2 ⊆ Aut C896C8:7(S3xC6)288,674
C88(S3×C6) = C6×C24⋊C2φ: S3×C6/C3×C6C2 ⊆ Aut C896C8:8(S3xC6)288,673
C89(S3×C6) = C6×C8⋊S3φ: S3×C6/C3×C6C2 ⊆ Aut C896C8:9(S3xC6)288,671

Non-split extensions G=N.Q with N=C8 and Q=S3×C6
extensionφ:Q→Aut NdρLabelID
C8.1(S3×C6) = C3×C8.D6φ: S3×C6/C32C22 ⊆ Aut C8484C8.1(S3xC6)288,680
C8.2(S3×C6) = C3×D4.D6φ: S3×C6/C32C22 ⊆ Aut C8484C8.2(S3xC6)288,686
C8.3(S3×C6) = C3×Q16⋊S3φ: S3×C6/C32C22 ⊆ Aut C8964C8.3(S3xC6)288,689
C8.4(S3×C6) = C3×C3⋊D16φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8.4(S3xC6)288,260
C8.5(S3×C6) = C3×D8.S3φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8.5(S3xC6)288,261
C8.6(S3×C6) = C3×C8.6D6φ: S3×C6/C3×S3C2 ⊆ Aut C8964C8.6(S3xC6)288,262
C8.7(S3×C6) = C3×C3⋊Q32φ: S3×C6/C3×S3C2 ⊆ Aut C8964C8.7(S3xC6)288,263
C8.8(S3×C6) = C3×D83S3φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8.8(S3xC6)288,683
C8.9(S3×C6) = C3×S3×Q16φ: S3×C6/C3×S3C2 ⊆ Aut C8964C8.9(S3xC6)288,688
C8.10(S3×C6) = C3×D24⋊C2φ: S3×C6/C3×S3C2 ⊆ Aut C8964C8.10(S3xC6)288,690
C8.11(S3×C6) = C3×Q8.7D6φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8.11(S3xC6)288,687
C8.12(S3×C6) = C3×D12.C4φ: S3×C6/C3×S3C2 ⊆ Aut C8484C8.12(S3xC6)288,678
C8.13(S3×C6) = C3×D48φ: S3×C6/C3×C6C2 ⊆ Aut C8962C8.13(S3xC6)288,233
C8.14(S3×C6) = C3×C48⋊C2φ: S3×C6/C3×C6C2 ⊆ Aut C8962C8.14(S3xC6)288,234
C8.15(S3×C6) = C3×Dic24φ: S3×C6/C3×C6C2 ⊆ Aut C8962C8.15(S3xC6)288,235
C8.16(S3×C6) = C6×Dic12φ: S3×C6/C3×C6C2 ⊆ Aut C896C8.16(S3xC6)288,676
C8.17(S3×C6) = C3×C4○D24φ: S3×C6/C3×C6C2 ⊆ Aut C8482C8.17(S3xC6)288,675
C8.18(S3×C6) = C3×C8○D12φ: S3×C6/C3×C6C2 ⊆ Aut C8482C8.18(S3xC6)288,672
C8.19(S3×C6) = S3×C48central extension (φ=1)962C8.19(S3xC6)288,231
C8.20(S3×C6) = C3×D6.C8central extension (φ=1)962C8.20(S3xC6)288,232
C8.21(S3×C6) = C6×C3⋊C16central extension (φ=1)96C8.21(S3xC6)288,245
C8.22(S3×C6) = C3×C12.C8central extension (φ=1)482C8.22(S3xC6)288,246

׿
×
𝔽