Copied to
clipboard

G = C3×D8.S3order 288 = 25·32

Direct product of C3 and D8.S3

direct product, metabelian, supersoluble, monomial

Aliases: C3×D8.S3, C24.53D6, C327SD32, Dic123C6, C3⋊C162C6, D8.(C3×S3), C8.5(S3×C6), C6.9(C3×D8), C24.3(C2×C6), (C3×D8).1C6, (C3×D8).7S3, C32(C3×SD32), C12.4(C3×D4), (C3×C6).31D8, (C3×C12).42D4, C6.31(D4⋊S3), (C3×Dic12)⋊7C2, (C32×D8).1C2, C12.84(C3⋊D4), (C3×C24).14C22, (C3×C3⋊C16)⋊5C2, C2.5(C3×D4⋊S3), C4.2(C3×C3⋊D4), SmallGroup(288,261)

Series: Derived Chief Lower central Upper central

C1C24 — C3×D8.S3
C1C3C6C12C24C3×C24C3×Dic12 — C3×D8.S3
C3C6C12C24 — C3×D8.S3
C1C6C12C24C3×D8

Generators and relations for C3×D8.S3
 G = < a,b,c,d,e | a3=b8=c2=d3=1, e2=b4, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=b5c, ede-1=d-1 >

Subgroups: 186 in 63 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, Dic3, C12, C12, C2×C6, C16, D8, Q16, C3×C6, C3×C6, C24, C24, Dic6, C3×D4, C3×Q8, SD32, C3×Dic3, C3×C12, C62, C3⋊C16, C48, Dic12, C3×D8, C3×D8, C3×Q16, C3×C24, C3×Dic6, D4×C32, D8.S3, C3×SD32, C3×C3⋊C16, C3×Dic12, C32×D8, C3×D8.S3
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, SD32, S3×C6, D4⋊S3, C3×D8, C3×C3⋊D4, D8.S3, C3×SD32, C3×D4⋊S3, C3×D8.S3

Smallest permutation representation of C3×D8.S3
On 48 points
Generators in S48
(1 33 25)(2 34 26)(3 35 27)(4 36 28)(5 37 29)(6 38 30)(7 39 31)(8 40 32)(9 46 20)(10 47 21)(11 48 22)(12 41 23)(13 42 24)(14 43 17)(15 44 18)(16 45 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8)(2 7)(3 6)(4 5)(9 15)(10 14)(11 13)(17 21)(18 20)(22 24)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)(36 37)(42 48)(43 47)(44 46)
(1 25 33)(2 26 34)(3 27 35)(4 28 36)(5 29 37)(6 30 38)(7 31 39)(8 32 40)(9 46 20)(10 47 21)(11 48 22)(12 41 23)(13 42 24)(14 43 17)(15 44 18)(16 45 19)
(1 9 5 13)(2 16 6 12)(3 15 7 11)(4 14 8 10)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 46 37 42)(34 45 38 41)(35 44 39 48)(36 43 40 47)

G:=sub<Sym(48)| (1,33,25)(2,34,26)(3,35,27)(4,36,28)(5,37,29)(6,38,30)(7,39,31)(8,40,32)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,32)(26,31)(27,30)(28,29)(33,40)(34,39)(35,38)(36,37)(42,48)(43,47)(44,46), (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,31,39)(8,32,40)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (1,9,5,13)(2,16,6,12)(3,15,7,11)(4,14,8,10)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,46,37,42)(34,45,38,41)(35,44,39,48)(36,43,40,47)>;

G:=Group( (1,33,25)(2,34,26)(3,35,27)(4,36,28)(5,37,29)(6,38,30)(7,39,31)(8,40,32)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,32)(26,31)(27,30)(28,29)(33,40)(34,39)(35,38)(36,37)(42,48)(43,47)(44,46), (1,25,33)(2,26,34)(3,27,35)(4,28,36)(5,29,37)(6,30,38)(7,31,39)(8,32,40)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (1,9,5,13)(2,16,6,12)(3,15,7,11)(4,14,8,10)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,46,37,42)(34,45,38,41)(35,44,39,48)(36,43,40,47) );

G=PermutationGroup([[(1,33,25),(2,34,26),(3,35,27),(4,36,28),(5,37,29),(6,38,30),(7,39,31),(8,40,32),(9,46,20),(10,47,21),(11,48,22),(12,41,23),(13,42,24),(14,43,17),(15,44,18),(16,45,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8),(2,7),(3,6),(4,5),(9,15),(10,14),(11,13),(17,21),(18,20),(22,24),(25,32),(26,31),(27,30),(28,29),(33,40),(34,39),(35,38),(36,37),(42,48),(43,47),(44,46)], [(1,25,33),(2,26,34),(3,27,35),(4,28,36),(5,29,37),(6,30,38),(7,31,39),(8,32,40),(9,46,20),(10,47,21),(11,48,22),(12,41,23),(13,42,24),(14,43,17),(15,44,18),(16,45,19)], [(1,9,5,13),(2,16,6,12),(3,15,7,11),(4,14,8,10),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,46,37,42),(34,45,38,41),(35,44,39,48),(36,43,40,47)]])

54 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B6A6B6C6D6E6F···6M8A8B12A12B12C12D12E12F12G16A16B16C16D24A24B24C24D24E···24J48A···48H
order1223333344666666···68812121212121212161616162424242424···2448···48
size11811222224112228···822224442424666622224···46···6

54 irreducible representations

dim111111112222222222224444
type+++++++++-
imageC1C2C2C2C3C6C6C6S3D4D6D8C3×S3C3⋊D4C3×D4SD32S3×C6C3×D8C3×C3⋊D4C3×SD32D4⋊S3D8.S3C3×D4⋊S3C3×D8.S3
kernelC3×D8.S3C3×C3⋊C16C3×Dic12C32×D8D8.S3C3⋊C16Dic12C3×D8C3×D8C3×C12C24C3×C6D8C12C12C32C8C6C4C3C6C3C2C1
# reps111122221112222424481224

Matrix representation of C3×D8.S3 in GL4(𝔽7) generated by

4000
0400
0040
0004
,
3302
1311
2263
3423
,
0643
4444
3004
0663
,
4446
1563
5561
3454
,
6331
6366
5464
0326
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,1,2,3,3,3,2,4,0,1,6,2,2,1,3,3],[0,4,3,0,6,4,0,6,4,4,0,6,3,4,4,3],[4,1,5,3,4,5,5,4,4,6,6,5,6,3,1,4],[6,6,5,0,3,3,4,3,3,6,6,2,1,6,4,6] >;

C3×D8.S3 in GAP, Magma, Sage, TeX

C_3\times D_8.S_3
% in TeX

G:=Group("C3xD8.S3");
// GroupNames label

G:=SmallGroup(288,261);
// by ID

G=gap.SmallGroup(288,261);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,336,197,1011,514,192,2524,1271,102,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^8=c^2=d^3=1,e^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^5*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽