Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C3×S3

Direct product G=N×Q with N=C2×D4 and Q=C3×S3
dρLabelID
S3×C6×D448S3xC6xD4288,992

Semidirect products G=N:Q with N=C2×D4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1(C3×S3) = C6×D4⋊S3φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4):1(C3xS3)288,702
(C2×D4)⋊2(C3×S3) = C3×D126C22φ: C3×S3/C32C2 ⊆ Out C2×D4244(C2xD4):2(C3xS3)288,703
(C2×D4)⋊3(C3×S3) = C3×C232D6φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4):3(C3xS3)288,708
(C2×D4)⋊4(C3×S3) = C3×D63D4φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4):4(C3xS3)288,709
(C2×D4)⋊5(C3×S3) = C3×C23.14D6φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4):5(C3xS3)288,710
(C2×D4)⋊6(C3×S3) = C3×C123D4φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4):6(C3xS3)288,711
(C2×D4)⋊7(C3×S3) = C3×D46D6φ: C3×S3/C32C2 ⊆ Out C2×D4244(C2xD4):7(C3xS3)288,994
(C2×D4)⋊8(C3×S3) = C6×D42S3φ: trivial image48(C2xD4):8(C3xS3)288,993

Non-split extensions G=N.Q with N=C2×D4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
(C2×D4).1(C3×S3) = C3×D4⋊Dic3φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4).1(C3xS3)288,266
(C2×D4).2(C3×S3) = C3×C12.D4φ: C3×S3/C32C2 ⊆ Out C2×D4244(C2xD4).2(C3xS3)288,267
(C2×D4).3(C3×S3) = C3×C23.7D6φ: C3×S3/C32C2 ⊆ Out C2×D4244(C2xD4).3(C3xS3)288,268
(C2×D4).4(C3×S3) = C6×D4.S3φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4).4(C3xS3)288,704
(C2×D4).5(C3×S3) = C3×C23.23D6φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4).5(C3xS3)288,706
(C2×D4).6(C3×S3) = C3×C23.12D6φ: C3×S3/C32C2 ⊆ Out C2×D448(C2xD4).6(C3xS3)288,707
(C2×D4).7(C3×S3) = C3×D4×Dic3φ: trivial image48(C2xD4).7(C3xS3)288,705

׿
×
𝔽