extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×D8) = C3×D48 | φ: C3×D8/C24 → C2 ⊆ Aut C6 | 96 | 2 | C6.1(C3xD8) | 288,233 |
C6.2(C3×D8) = C3×C48⋊C2 | φ: C3×D8/C24 → C2 ⊆ Aut C6 | 96 | 2 | C6.2(C3xD8) | 288,234 |
C6.3(C3×D8) = C3×Dic24 | φ: C3×D8/C24 → C2 ⊆ Aut C6 | 96 | 2 | C6.3(C3xD8) | 288,235 |
C6.4(C3×D8) = C3×C24⋊1C4 | φ: C3×D8/C24 → C2 ⊆ Aut C6 | 96 | | C6.4(C3xD8) | 288,252 |
C6.5(C3×D8) = C3×C2.D24 | φ: C3×D8/C24 → C2 ⊆ Aut C6 | 96 | | C6.5(C3xD8) | 288,255 |
C6.6(C3×D8) = C3×C6.Q16 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 96 | | C6.6(C3xD8) | 288,241 |
C6.7(C3×D8) = C3×C6.D8 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 96 | | C6.7(C3xD8) | 288,243 |
C6.8(C3×D8) = C3×C3⋊D16 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(C3xD8) | 288,260 |
C6.9(C3×D8) = C3×D8.S3 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(C3xD8) | 288,261 |
C6.10(C3×D8) = C3×C8.6D6 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 96 | 4 | C6.10(C3xD8) | 288,262 |
C6.11(C3×D8) = C3×C3⋊Q32 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 96 | 4 | C6.11(C3xD8) | 288,263 |
C6.12(C3×D8) = C3×D4⋊Dic3 | φ: C3×D8/C3×D4 → C2 ⊆ Aut C6 | 48 | | C6.12(C3xD8) | 288,266 |
C6.13(C3×D8) = C9×D4⋊C4 | central extension (φ=1) | 144 | | C6.13(C3xD8) | 288,52 |
C6.14(C3×D8) = C9×C2.D8 | central extension (φ=1) | 288 | | C6.14(C3xD8) | 288,57 |
C6.15(C3×D8) = C9×D16 | central extension (φ=1) | 144 | 2 | C6.15(C3xD8) | 288,61 |
C6.16(C3×D8) = C9×SD32 | central extension (φ=1) | 144 | 2 | C6.16(C3xD8) | 288,62 |
C6.17(C3×D8) = C9×Q32 | central extension (φ=1) | 288 | 2 | C6.17(C3xD8) | 288,63 |
C6.18(C3×D8) = D8×C18 | central extension (φ=1) | 144 | | C6.18(C3xD8) | 288,182 |
C6.19(C3×D8) = C32×D4⋊C4 | central extension (φ=1) | 144 | | C6.19(C3xD8) | 288,320 |
C6.20(C3×D8) = C32×C2.D8 | central extension (φ=1) | 288 | | C6.20(C3xD8) | 288,325 |
C6.21(C3×D8) = C32×D16 | central extension (φ=1) | 144 | | C6.21(C3xD8) | 288,329 |
C6.22(C3×D8) = C32×SD32 | central extension (φ=1) | 144 | | C6.22(C3xD8) | 288,330 |
C6.23(C3×D8) = C32×Q32 | central extension (φ=1) | 288 | | C6.23(C3xD8) | 288,331 |