Extensions 1→N→G→Q→1 with N=C6 and Q=C3×D8

Direct product G=N×Q with N=C6 and Q=C3×D8
dρLabelID
D8×C3×C6144D8xC3xC6288,829

Semidirect products G=N:Q with N=C6 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C61(C3×D8) = C6×D24φ: C3×D8/C24C2 ⊆ Aut C696C6:1(C3xD8)288,674
C62(C3×D8) = C6×D4⋊S3φ: C3×D8/C3×D4C2 ⊆ Aut C648C6:2(C3xD8)288,702

Non-split extensions G=N.Q with N=C6 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C6.1(C3×D8) = C3×D48φ: C3×D8/C24C2 ⊆ Aut C6962C6.1(C3xD8)288,233
C6.2(C3×D8) = C3×C48⋊C2φ: C3×D8/C24C2 ⊆ Aut C6962C6.2(C3xD8)288,234
C6.3(C3×D8) = C3×Dic24φ: C3×D8/C24C2 ⊆ Aut C6962C6.3(C3xD8)288,235
C6.4(C3×D8) = C3×C241C4φ: C3×D8/C24C2 ⊆ Aut C696C6.4(C3xD8)288,252
C6.5(C3×D8) = C3×C2.D24φ: C3×D8/C24C2 ⊆ Aut C696C6.5(C3xD8)288,255
C6.6(C3×D8) = C3×C6.Q16φ: C3×D8/C3×D4C2 ⊆ Aut C696C6.6(C3xD8)288,241
C6.7(C3×D8) = C3×C6.D8φ: C3×D8/C3×D4C2 ⊆ Aut C696C6.7(C3xD8)288,243
C6.8(C3×D8) = C3×C3⋊D16φ: C3×D8/C3×D4C2 ⊆ Aut C6484C6.8(C3xD8)288,260
C6.9(C3×D8) = C3×D8.S3φ: C3×D8/C3×D4C2 ⊆ Aut C6484C6.9(C3xD8)288,261
C6.10(C3×D8) = C3×C8.6D6φ: C3×D8/C3×D4C2 ⊆ Aut C6964C6.10(C3xD8)288,262
C6.11(C3×D8) = C3×C3⋊Q32φ: C3×D8/C3×D4C2 ⊆ Aut C6964C6.11(C3xD8)288,263
C6.12(C3×D8) = C3×D4⋊Dic3φ: C3×D8/C3×D4C2 ⊆ Aut C648C6.12(C3xD8)288,266
C6.13(C3×D8) = C9×D4⋊C4central extension (φ=1)144C6.13(C3xD8)288,52
C6.14(C3×D8) = C9×C2.D8central extension (φ=1)288C6.14(C3xD8)288,57
C6.15(C3×D8) = C9×D16central extension (φ=1)1442C6.15(C3xD8)288,61
C6.16(C3×D8) = C9×SD32central extension (φ=1)1442C6.16(C3xD8)288,62
C6.17(C3×D8) = C9×Q32central extension (φ=1)2882C6.17(C3xD8)288,63
C6.18(C3×D8) = D8×C18central extension (φ=1)144C6.18(C3xD8)288,182
C6.19(C3×D8) = C32×D4⋊C4central extension (φ=1)144C6.19(C3xD8)288,320
C6.20(C3×D8) = C32×C2.D8central extension (φ=1)288C6.20(C3xD8)288,325
C6.21(C3×D8) = C32×D16central extension (φ=1)144C6.21(C3xD8)288,329
C6.22(C3×D8) = C32×SD32central extension (φ=1)144C6.22(C3xD8)288,330
C6.23(C3×D8) = C32×Q32central extension (φ=1)288C6.23(C3xD8)288,331

׿
×
𝔽