Extensions 1→N→G→Q→1 with N=Dic3.A4 and Q=C2

Direct product G=N×Q with N=Dic3.A4 and Q=C2
dρLabelID
C2×Dic3.A496C2xDic3.A4288,921

Semidirect products G=N:Q with N=Dic3.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.A41C2 = Dic3.4S4φ: C2/C1C2 ⊆ Out Dic3.A4484Dic3.A4:1C2288,845
Dic3.A42C2 = Dic3.5S4φ: C2/C1C2 ⊆ Out Dic3.A4484+Dic3.A4:2C2288,846
Dic3.A43C2 = GL2(𝔽3)⋊S3φ: C2/C1C2 ⊆ Out Dic3.A4484+Dic3.A4:3C2288,847
Dic3.A44C2 = SL2(𝔽3).11D6φ: C2/C1C2 ⊆ Out Dic3.A4484Dic3.A4:4C2288,923
Dic3.A45C2 = Dic6.A4φ: C2/C1C2 ⊆ Out Dic3.A4724+Dic3.A4:5C2288,924
Dic3.A46C2 = S3×C4.A4φ: trivial image484Dic3.A4:6C2288,925

Non-split extensions G=N.Q with N=Dic3.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.A4.C2 = CSU2(𝔽3)⋊S3φ: C2/C1C2 ⊆ Out Dic3.A4964Dic3.A4.C2288,844

׿
×
𝔽