Copied to
clipboard

G = Dic3.5S4order 288 = 25·32

2nd non-split extension by Dic3 of S4 acting through Inn(Dic3)

non-abelian, soluble

Aliases: Dic3.5S4, CSU2(𝔽3)⋊3S3, SL2(𝔽3).3D6, Q8.3S32, C2.6(S3×S4), C6.3(C2×S4), (C3×Q8).3D6, C6.6S41C2, Q83S32S3, C31(C4.6S4), Dic3.A42C2, (C3×CSU2(𝔽3))⋊1C2, (C3×SL2(𝔽3)).3C22, SmallGroup(288,846)

Series: Derived Chief Lower central Upper central

C1C2Q8C3×SL2(𝔽3) — Dic3.5S4
C1C2Q8C3×Q8C3×SL2(𝔽3)Dic3.A4 — Dic3.5S4
C3×SL2(𝔽3) — Dic3.5S4
C1C2

Generators and relations for Dic3.5S4
 G = < a,b,c,d,e,f | a6=e3=1, b2=c2=d2=f2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=a3c, ece-1=a3cd, fcf-1=cd, ede-1=c, fdf-1=a3d, fef-1=e-1 >

Subgroups: 542 in 85 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C32, Dic3, Dic3, C12, D6, C2×C8, D8, SD16, Q16, C4○D4, C3⋊S3, C3×C6, C3⋊C8, C24, SL2(𝔽3), SL2(𝔽3), C4×S3, D12, C3×Q8, C3×Q8, C4○D8, C3×Dic3, C2×C3⋊S3, S3×C8, D24, Q82S3, C3×Q16, CSU2(𝔽3), GL2(𝔽3), C4.A4, Q83S3, Q83S3, C6.D6, C3×SL2(𝔽3), D24⋊C2, C4.6S4, C3×CSU2(𝔽3), C6.6S4, Dic3.A4, Dic3.5S4
Quotients: C1, C2, C22, S3, D6, S4, S32, C2×S4, C4.6S4, S3×S4, Dic3.5S4

Character table of Dic3.5S4

 class 12A2B2C3A3B3C4A4B4C4D6A6B6C8A8B8C8D12A12B12C12D24A24B
 size 1118362816336122816661818122424241212
ρ1111111111111111111111111    trivial
ρ211-1-1111-1-11111111-1-11-1-1111    linear of order 2
ρ311-11111-1-11-1111-1-1111-1-1-1-1-1    linear of order 2
ρ4111-1111111-1111-1-1-1-1111-1-1-1    linear of order 2
ρ522202-1-122202-1-100002-1-1000    orthogonal lifted from S3
ρ62200-12-10022-12-12200-100-1-1-1    orthogonal lifted from S3
ρ722-202-1-1-2-2202-1-10000211000    orthogonal lifted from D6
ρ82200-12-1002-2-12-1-2-200-100111    orthogonal lifted from D6
ρ92-2002-1-12i-2i00-211-22-2--20i-i0-22    complex lifted from C4.6S4
ρ102-2002-1-1-2i2i00-2112-2-2--20-ii02-2    complex lifted from C4.6S4
ρ112-2002-1-1-2i2i00-211-22--2-20-ii0-22    complex lifted from C4.6S4
ρ122-2002-1-12i-2i00-2112-2--2-20i-i02-2    complex lifted from C4.6S4
ρ1333-1130033-11300-1-1-1-1-1001-1-1    orthogonal lifted from S4
ρ14331-1300-3-3-11300-1-111-1001-1-1    orthogonal lifted from C2×S4
ρ153311300-3-3-1-130011-1-1-100-111    orthogonal lifted from C2×S4
ρ1633-1-130033-1-13001111-100-111    orthogonal lifted from S4
ρ174400-2-210040-2-210000-200000    orthogonal lifted from S32
ρ184-400-2-21000022-1-22220000002-2    orthogonal faithful
ρ194-400-2-21000022-122-22000000-22    orthogonal faithful
ρ204-400411-4i4i00-4-1-100000i-i000    complex lifted from C4.6S4
ρ214-4004114i-4i00-4-1-100000-ii000    complex lifted from C4.6S4
ρ226600-30000-2-2-30022001001-1-1    orthogonal lifted from S3×S4
ρ236600-30000-22-300-2-200100-111    orthogonal lifted from S3×S4
ρ248-800-42-100004-210000000000    orthogonal faithful

Smallest permutation representation of Dic3.5S4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 35 16 32)(14 34 17 31)(15 33 18 36)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 46 28 43)(26 45 29 48)(27 44 30 47)
(1 25 4 28)(2 26 5 29)(3 27 6 30)(7 45 10 48)(8 46 11 43)(9 47 12 44)(13 41 16 38)(14 42 17 39)(15 37 18 40)(19 34 22 31)(20 35 23 32)(21 36 24 33)
(1 31 4 34)(2 32 5 35)(3 33 6 36)(7 13 10 16)(8 14 11 17)(9 15 12 18)(19 25 22 28)(20 26 23 29)(21 27 24 30)(37 47 40 44)(38 48 41 45)(39 43 42 46)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 37 43)(14 38 44)(15 39 45)(16 40 46)(17 41 47)(18 42 48)(19 29 33)(20 30 34)(21 25 35)(22 26 36)(23 27 31)(24 28 32)
(1 11 4 8)(2 12 5 9)(3 7 6 10)(13 33 16 36)(14 34 17 31)(15 35 18 32)(19 46 22 43)(20 47 23 44)(21 48 24 45)(25 42 28 39)(26 37 29 40)(27 38 30 41)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,35,16,32)(14,34,17,31)(15,33,18,36)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,46,28,43)(26,45,29,48)(27,44,30,47), (1,25,4,28)(2,26,5,29)(3,27,6,30)(7,45,10,48)(8,46,11,43)(9,47,12,44)(13,41,16,38)(14,42,17,39)(15,37,18,40)(19,34,22,31)(20,35,23,32)(21,36,24,33), (1,31,4,34)(2,32,5,35)(3,33,6,36)(7,13,10,16)(8,14,11,17)(9,15,12,18)(19,25,22,28)(20,26,23,29)(21,27,24,30)(37,47,40,44)(38,48,41,45)(39,43,42,46), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,37,43)(14,38,44)(15,39,45)(16,40,46)(17,41,47)(18,42,48)(19,29,33)(20,30,34)(21,25,35)(22,26,36)(23,27,31)(24,28,32), (1,11,4,8)(2,12,5,9)(3,7,6,10)(13,33,16,36)(14,34,17,31)(15,35,18,32)(19,46,22,43)(20,47,23,44)(21,48,24,45)(25,42,28,39)(26,37,29,40)(27,38,30,41)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,35,16,32)(14,34,17,31)(15,33,18,36)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,46,28,43)(26,45,29,48)(27,44,30,47), (1,25,4,28)(2,26,5,29)(3,27,6,30)(7,45,10,48)(8,46,11,43)(9,47,12,44)(13,41,16,38)(14,42,17,39)(15,37,18,40)(19,34,22,31)(20,35,23,32)(21,36,24,33), (1,31,4,34)(2,32,5,35)(3,33,6,36)(7,13,10,16)(8,14,11,17)(9,15,12,18)(19,25,22,28)(20,26,23,29)(21,27,24,30)(37,47,40,44)(38,48,41,45)(39,43,42,46), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,37,43)(14,38,44)(15,39,45)(16,40,46)(17,41,47)(18,42,48)(19,29,33)(20,30,34)(21,25,35)(22,26,36)(23,27,31)(24,28,32), (1,11,4,8)(2,12,5,9)(3,7,6,10)(13,33,16,36)(14,34,17,31)(15,35,18,32)(19,46,22,43)(20,47,23,44)(21,48,24,45)(25,42,28,39)(26,37,29,40)(27,38,30,41) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,35,16,32),(14,34,17,31),(15,33,18,36),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,46,28,43),(26,45,29,48),(27,44,30,47)], [(1,25,4,28),(2,26,5,29),(3,27,6,30),(7,45,10,48),(8,46,11,43),(9,47,12,44),(13,41,16,38),(14,42,17,39),(15,37,18,40),(19,34,22,31),(20,35,23,32),(21,36,24,33)], [(1,31,4,34),(2,32,5,35),(3,33,6,36),(7,13,10,16),(8,14,11,17),(9,15,12,18),(19,25,22,28),(20,26,23,29),(21,27,24,30),(37,47,40,44),(38,48,41,45),(39,43,42,46)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,37,43),(14,38,44),(15,39,45),(16,40,46),(17,41,47),(18,42,48),(19,29,33),(20,30,34),(21,25,35),(22,26,36),(23,27,31),(24,28,32)], [(1,11,4,8),(2,12,5,9),(3,7,6,10),(13,33,16,36),(14,34,17,31),(15,35,18,32),(19,46,22,43),(20,47,23,44),(21,48,24,45),(25,42,28,39),(26,37,29,40),(27,38,30,41)]])

Matrix representation of Dic3.5S4 in GL4(𝔽7) generated by

6636
1433
4336
0003
,
4033
6024
3411
3322
,
3525
6003
2203
1634
,
1540
2015
4436
3423
,
4553
6322
0040
4351
,
4114
3032
2233
5210
G:=sub<GL(4,GF(7))| [6,1,4,0,6,4,3,0,3,3,3,0,6,3,6,3],[4,6,3,3,0,0,4,3,3,2,1,2,3,4,1,2],[3,6,2,1,5,0,2,6,2,0,0,3,5,3,3,4],[1,2,4,3,5,0,4,4,4,1,3,2,0,5,6,3],[4,6,0,4,5,3,0,3,5,2,4,5,3,2,0,1],[4,3,2,5,1,0,2,2,1,3,3,1,4,2,3,0] >;

Dic3.5S4 in GAP, Magma, Sage, TeX

{\rm Dic}_3._5S_4
% in TeX

G:=Group("Dic3.5S4");
// GroupNames label

G:=SmallGroup(288,846);
// by ID

G=gap.SmallGroup(288,846);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,1016,93,675,1271,1908,172,768,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^6=e^3=1,b^2=c^2=d^2=f^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=a^3*c,e*c*e^-1=a^3*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=a^3*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Character table of Dic3.5S4 in TeX

׿
×
𝔽