Extensions 1→N→G→Q→1 with N=C3⋊S33C8 and Q=C2

Direct product G=N×Q with N=C3⋊S33C8 and Q=C2
dρLabelID
C2×C3⋊S33C848C2xC3:S3:3C8288,929

Semidirect products G=N:Q with N=C3⋊S33C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊S33C81C2 = C3⋊S3.5D8φ: C2/C1C2 ⊆ Out C3⋊S33C8248+C3:S3:3C8:1C2288,430
C3⋊S33C82C2 = C3⋊S3⋊D8φ: C2/C1C2 ⊆ Out C3⋊S33C8248+C3:S3:3C8:2C2288,873
C3⋊S33C83C2 = C3⋊S32SD16φ: C2/C1C2 ⊆ Out C3⋊S33C8248+C3:S3:3C8:3C2288,875
C3⋊S33C84C2 = C62.(C2×C4)φ: C2/C1C2 ⊆ Out C3⋊S33C8488-C3:S3:3C8:4C2288,935
C3⋊S33C85C2 = C12⋊S3.C4φ: C2/C1C2 ⊆ Out C3⋊S33C8488+C3:S3:3C8:5C2288,937
C3⋊S33C86C2 = S32⋊C8φ: C2/C1C2 ⊆ Out C3⋊S33C8244C3:S3:3C8:6C2288,374
C3⋊S33C87C2 = C32⋊D85C2φ: C2/C1C2 ⊆ Out C3⋊S33C8484C3:S3:3C8:7C2288,871
C3⋊S33C88C2 = C3⋊S3⋊M4(2)φ: C2/C1C2 ⊆ Out C3⋊S33C8244C3:S3:3C8:8C2288,931

Non-split extensions G=N.Q with N=C3⋊S33C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊S33C8.1C2 = C3⋊S3.5Q16φ: C2/C1C2 ⊆ Out C3⋊S33C8488-C3:S3:3C8.1C2288,432
C3⋊S33C8.2C2 = C3⋊S3⋊Q16φ: C2/C1C2 ⊆ Out C3⋊S33C8488-C3:S3:3C8.2C2288,876
C3⋊S33C8.3C2 = C4.19S3≀C2φ: C2/C1C2 ⊆ Out C3⋊S33C8484C3:S3:3C8.3C2288,381
C3⋊S33C8.4C2 = C4.4PSU3(𝔽2)φ: C2/C1C2 ⊆ Out C3⋊S33C8488C3:S3:3C8.4C2288,392
C3⋊S33C8.5C2 = C4.PSU3(𝔽2)φ: C2/C1C2 ⊆ Out C3⋊S33C8488C3:S3:3C8.5C2288,393
C3⋊S33C8.6C2 = C4.2PSU3(𝔽2)φ: C2/C1C2 ⊆ Out C3⋊S33C8488C3:S3:3C8.6C2288,394
C3⋊S33C8.7C2 = (C3×C24)⋊C4φ: C2/C1C2 ⊆ Out C3⋊S33C8484C3:S3:3C8.7C2288,415
C3⋊S33C8.8C2 = C4.3F9φ: C2/C1C2 ⊆ Out C3⋊S33C8488C3:S3:3C8.8C2288,861
C3⋊S33C8.9C2 = C4.F9φ: C2/C1C2 ⊆ Out C3⋊S33C8488C3:S3:3C8.9C2288,862
C3⋊S33C8.10C2 = C8×C32⋊C4φ: trivial image484C3:S3:3C8.10C2288,414

׿
×
𝔽