Extensions 1→N→G→Q→1 with N=C12⋊S3 and Q=C4

Direct product G=N×Q with N=C12⋊S3 and Q=C4
dρLabelID
C4×C12⋊S3144C4xC12:S3288,730

Semidirect products G=N:Q with N=C12⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
C12⋊S31C4 = C3⋊S3.5D8φ: C4/C1C4 ⊆ Out C12⋊S3248+C12:S3:1C4288,430
C12⋊S32C4 = C327C4≀C2φ: C4/C1C4 ⊆ Out C12⋊S3488+C12:S3:2C4288,433
C12⋊S33C4 = D4×C32⋊C4φ: C4/C1C4 ⊆ Out C12⋊S3248+C12:S3:3C4288,936
C12⋊S34C4 = C122⋊C2φ: C4/C2C2 ⊆ Out C12⋊S372C12:S3:4C4288,280
C12⋊S35C4 = C62.84D4φ: C4/C2C2 ⊆ Out C12⋊S3144C12:S3:5C4288,296
C12⋊S36C4 = C6.17D24φ: C4/C2C2 ⊆ Out C12⋊S348C12:S3:6C4288,212
C12⋊S37C4 = C12.80D12φ: C4/C2C2 ⊆ Out C12⋊S3484C12:S3:7C4288,218
C12⋊S38C4 = C62.113D4φ: C4/C2C2 ⊆ Out C12⋊S3144C12:S3:8C4288,284
C12⋊S39C4 = C62.37D4φ: C4/C2C2 ⊆ Out C12⋊S372C12:S3:9C4288,300
C12⋊S310C4 = Dic35D12φ: C4/C2C2 ⊆ Out C12⋊S348C12:S3:10C4288,542
C12⋊S311C4 = C62.237C23φ: C4/C2C2 ⊆ Out C12⋊S3144C12:S3:11C4288,750

Non-split extensions G=N.Q with N=C12⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
C12⋊S3.C4 = C12⋊S3.C4φ: C4/C1C4 ⊆ Out C12⋊S3488+C12:S3.C4288,937
C12⋊S3.2C4 = C3⋊C8.22D6φ: C4/C2C2 ⊆ Out C12⋊S3484C12:S3.2C4288,465
C12⋊S3.3C4 = C24.47D6φ: C4/C2C2 ⊆ Out C12⋊S3144C12:S3.3C4288,764
C12⋊S3.4C4 = C24.95D6φ: trivial image144C12:S3.4C4288,758

׿
×
𝔽