Extensions 1→N→G→Q→1 with N=S3xDic6 and Q=C2

Direct product G=NxQ with N=S3xDic6 and Q=C2
dρLabelID
C2xS3xDic696C2xS3xDic6288,942

Semidirect products G=N:Q with N=S3xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xDic6):1C2 = S3xC24:C2φ: C2/C1C2 ⊆ Out S3xDic6484(S3xDic6):1C2288,440
(S3xDic6):2C2 = C24.3D6φ: C2/C1C2 ⊆ Out S3xDic6964-(S3xDic6):2C2288,448
(S3xDic6):3C2 = Dic12:S3φ: C2/C1C2 ⊆ Out S3xDic6484(S3xDic6):3C2288,449
(S3xDic6):4C2 = S3xD4.S3φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):4C2288,576
(S3xDic6):5C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):5C2288,577
(S3xDic6):6C2 = D12.11D6φ: C2/C1C2 ⊆ Out S3xDic6968-(S3xDic6):6C2288,591
(S3xDic6):7C2 = D12.33D6φ: C2/C1C2 ⊆ Out S3xDic6484(S3xDic6):7C2288,945
(S3xDic6):8C2 = D12.34D6φ: C2/C1C2 ⊆ Out S3xDic6484-(S3xDic6):8C2288,946
(S3xDic6):9C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):9C2288,957
(S3xDic6):10C2 = S3xD4:2S3φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):10C2288,959
(S3xDic6):11C2 = D12.25D6φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):11C2288,963
(S3xDic6):12C2 = S32xQ8φ: C2/C1C2 ⊆ Out S3xDic6488-(S3xDic6):12C2288,965
(S3xDic6):13C2 = S3xC4oD12φ: trivial image484(S3xDic6):13C2288,953

Non-split extensions G=N.Q with N=S3xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xDic6).1C2 = S3xDic12φ: C2/C1C2 ⊆ Out S3xDic6964-(S3xDic6).1C2288,447
(S3xDic6).2C2 = S3xC3:Q16φ: C2/C1C2 ⊆ Out S3xDic6968-(S3xDic6).2C2288,590

׿
x
:
Z
F
o
wr
Q
<