Copied to
clipboard

G = D12.34D6order 288 = 25·32

The non-split extension by D12 of D6 acting through Inn(D12)

metabelian, supersoluble, monomial

Aliases: D12.34D6, Dic6.35D6, C32:22- 1+4, C62.130C23, C4oD12:6S3, C3:D4.2D6, C3:2(Q8oD12), (S3xDic6):8C2, (C4xS3).14D6, C6.5(S3xC23), (C3xC6).5C24, D12:5S3:7C2, D6.4D6:3C2, (C2xC12).167D6, (S3xC6).3C23, D6.4(C22xS3), (S3xC12).31C22, (C6xC12).160C22, (C3xC12).114C23, C12.131(C22xS3), D6:S3.4C22, (C3xD12).43C22, C3:Dic3.16C23, (C3xDic3).4C23, Dic3.3(C22xS3), (S3xDic3).2C22, C32:2Q8.5C22, (C3xDic6).44C22, C32:4Q8.35C22, C4.62(C2xS32), (C2xC4).36S32, C2.8(C22xS32), C22.11(C2xS32), (C3xC4oD12):10C2, (C2xC6).13(C22xS3), (C2xC32:4Q8):20C2, (C3xC3:D4).3C22, (C2xC3:Dic3).103C22, SmallGroup(288,946)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12.34D6
C1C3C32C3xC6S3xC6S3xDic3S3xDic6 — D12.34D6
C32C3xC6 — D12.34D6
C1C2C2xC4

Generators and relations for D12.34D6
 G = < a,b,c,d | a12=b2=1, c6=d2=a6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=a6c5 >

Subgroups: 994 in 311 conjugacy classes, 108 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, Dic6, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, 2- 1+4, C3xDic3, C3:Dic3, C3xC12, S3xC6, C62, C2xDic6, C4oD12, C4oD12, D4:2S3, S3xQ8, C3xC4oD4, S3xDic3, D6:S3, C32:2Q8, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C32:4Q8, C2xC3:Dic3, C6xC12, Q8oD12, S3xDic6, D12:5S3, D6.4D6, C3xC4oD12, C2xC32:4Q8, D12.34D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2- 1+4, S32, S3xC23, C2xS32, Q8oD12, C22xS32, D12.34D6

Smallest permutation representation of D12.34D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 48)(23 47)(24 46)
(1 8 3 10 5 12 7 2 9 4 11 6)(13 18 23 16 21 14 19 24 17 22 15 20)(25 30 35 28 33 26 31 36 29 34 27 32)(37 44 39 46 41 48 43 38 45 40 47 42)
(1 20 7 14)(2 21 8 15)(3 22 9 16)(4 23 10 17)(5 24 11 18)(6 13 12 19)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 37 34 43)(29 38 35 44)(30 39 36 45)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,48)(23,47)(24,46), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,7,14)(2,21,8,15)(3,22,9,16)(4,23,10,17)(5,24,11,18)(6,13,12,19)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,48)(23,47)(24,46), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,7,14)(2,21,8,15)(3,22,9,16)(4,23,10,17)(5,24,11,18)(6,13,12,19)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,48),(23,47),(24,46)], [(1,8,3,10,5,12,7,2,9,4,11,6),(13,18,23,16,21,14,19,24,17,22,15,20),(25,30,35,28,33,26,31,36,29,34,27,32),(37,44,39,46,41,48,43,38,45,40,47,42)], [(1,20,7,14),(2,21,8,15),(3,22,9,16),(4,23,10,17),(5,24,11,18),(6,13,12,19),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,37,34,43),(29,38,35,44),(30,39,36,45)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G4H4I4J6A6B6C···6G6H6I6J6K12A12B12C12D12E···12J12K12L12M12N
order12222223334444444444666···666661212121212···1212121212
size112666622422666618181818224···41212121222224···412121212

45 irreducible representations

dim111111222222444444
type++++++++++++-+++--
imageC1C2C2C2C2C2S3D6D6D6D6D62- 1+4S32C2xS32C2xS32Q8oD12D12.34D6
kernelD12.34D6S3xDic6D12:5S3D6.4D6C3xC4oD12C2xC32:4Q8C4oD12Dic6C4xS3D12C3:D4C2xC12C32C2xC4C4C22C3C1
# reps144421224242112144

Matrix representation of D12.34D6 in GL4(F13) generated by

7300
101000
0073
001010
,
0085
0005
5800
0800
,
61000
3300
0033
00106
,
001010
0037
61000
3300
G:=sub<GL(4,GF(13))| [7,10,0,0,3,10,0,0,0,0,7,10,0,0,3,10],[0,0,5,0,0,0,8,8,8,0,0,0,5,5,0,0],[6,3,0,0,10,3,0,0,0,0,3,10,0,0,3,6],[0,0,6,3,0,0,10,3,10,3,0,0,10,7,0,0] >;

D12.34D6 in GAP, Magma, Sage, TeX

D_{12}._{34}D_6
% in TeX

G:=Group("D12.34D6");
// GroupNames label

G:=SmallGroup(288,946);
// by ID

G=gap.SmallGroup(288,946);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=d^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^6*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<