Copied to
clipboard

G = D12.25D6order 288 = 25·32

10th non-split extension by D12 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: D12.25D6, Dic6.25D6, C32:42- 1+4, (S3xQ8):7S3, Q8.18S32, Q8:3S3:7S3, C3:4(Q8oD12), (C4xS3).16D6, (C3xQ8).46D6, (S3xDic6):11C2, D6.D6:8C2, (C3xC6).22C24, C6.22(S3xC23), D12:S3:11C2, D12:5S3:11C2, (S3xC6).24C23, C12.34(C22xS3), (C3xC12).34C23, D6.22(C22xS3), (S3xC12).33C22, C3:3(Q8.15D6), D6:S3.9C22, C3:D12.3C22, (C3xD12).30C22, C3:Dic3.24C23, (S3xDic3).4C22, Dic3.11(C22xS3), (C3xDic6).30C22, (C3xDic3).15C23, C32:2Q8.10C22, (Q8xC32).21C22, C32:4Q8.22C22, (C3xS3xQ8):7C2, C4.34(C2xS32), (Q8xC3:S3):6C2, C2.24(C22xS32), (C3xQ8:3S3):7C2, (C4xC3:S3).44C22, (C2xC3:S3).46C23, SmallGroup(288,963)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12.25D6
C1C3C32C3xC6S3xC6S3xDic3S3xDic6 — D12.25D6
C32C3xC6 — D12.25D6
C1C2Q8

Generators and relations for D12.25D6
 G = < a,b,c,d | a12=b2=1, c6=d2=a6, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, bd=db, dcd-1=a6c5 >

Subgroups: 1026 in 311 conjugacy classes, 108 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, Q8, C32, Dic3, Dic3, Dic3, C12, C12, D6, D6, D6, C2xC6, C2xQ8, C4oD4, C3xS3, C3:S3, C3xC6, Dic6, Dic6, C4xS3, C4xS3, D12, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C3xQ8, C3xQ8, 2- 1+4, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C2xDic6, C4oD12, D4:2S3, S3xQ8, S3xQ8, Q8:3S3, Q8:3S3, C6xQ8, C3xC4oD4, S3xDic3, D6:S3, C3:D12, C3:D12, C32:2Q8, C3xDic6, S3xC12, C3xD12, C32:4Q8, C4xC3:S3, Q8xC32, Q8.15D6, Q8oD12, S3xDic6, D12:5S3, D12:S3, D6.D6, C3xS3xQ8, C3xQ8:3S3, Q8xC3:S3, D12.25D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2- 1+4, S32, S3xC23, C2xS32, Q8.15D6, Q8oD12, C22xS32, D12.25D6

Smallest permutation representation of D12.25D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 36)(23 35)(24 34)
(1 19 3 21 5 23 7 13 9 15 11 17)(2 14 4 16 6 18 8 20 10 22 12 24)(25 38 35 48 33 46 31 44 29 42 27 40)(26 45 36 43 34 41 32 39 30 37 28 47)
(1 27 7 33)(2 28 8 34)(3 29 9 35)(4 30 10 36)(5 31 11 25)(6 32 12 26)(13 48 19 42)(14 37 20 43)(15 38 21 44)(16 39 22 45)(17 40 23 46)(18 41 24 47)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,36)(23,35)(24,34), (1,19,3,21,5,23,7,13,9,15,11,17)(2,14,4,16,6,18,8,20,10,22,12,24)(25,38,35,48,33,46,31,44,29,42,27,40)(26,45,36,43,34,41,32,39,30,37,28,47), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,36)(23,35)(24,34), (1,19,3,21,5,23,7,13,9,15,11,17)(2,14,4,16,6,18,8,20,10,22,12,24)(25,38,35,48,33,46,31,44,29,42,27,40)(26,45,36,43,34,41,32,39,30,37,28,47), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,36),(23,35),(24,34)], [(1,19,3,21,5,23,7,13,9,15,11,17),(2,14,4,16,6,18,8,20,10,22,12,24),(25,38,35,48,33,46,31,44,29,42,27,40),(26,45,36,43,34,41,32,39,30,37,28,47)], [(1,27,7,33),(2,28,8,34),(3,29,9,35),(4,30,10,36),(5,31,11,25),(6,32,12,26),(13,48,19,42),(14,37,20,43),(15,38,21,44),(16,39,22,45),(17,40,23,46),(18,41,24,47)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E6F6G6H12A···12F12G12H12I12J12K12L12M12N
order122222233344444444446666666612···121212121212121212
size116666182242226666181818224661212124···466888121212

42 irreducible representations

dim11111111222222444448
type++++++++++++++-++--
imageC1C2C2C2C2C2C2C2S3S3D6D6D6D62- 1+4S32C2xS32Q8.15D6Q8oD12D12.25D6
kernelD12.25D6S3xDic6D12:5S3D12:S3D6.D6C3xS3xQ8C3xQ8:3S3Q8xC3:S3S3xQ8Q8:3S3Dic6C4xS3D12C3xQ8C32Q8C4C3C3C1
# reps13333111113632113221

Matrix representation of D12.25D6 in GL6(F13)

1200000
0120000
000058
000050
005800
005000
,
1200000
0120000
000092
0000114
0041100
002900
,
0120000
110000
005000
000500
000080
000008
,
010000
100000
000037
0000610
003700
0061000

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,5,5,0,0,0,0,8,0,0,0,5,5,0,0,0,0,8,0,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,4,2,0,0,0,0,11,9,0,0,9,11,0,0,0,0,2,4,0,0],[0,1,0,0,0,0,12,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0] >;

D12.25D6 in GAP, Magma, Sage, TeX

D_{12}._{25}D_6
% in TeX

G:=Group("D12.25D6");
// GroupNames label

G:=SmallGroup(288,963);
// by ID

G=gap.SmallGroup(288,963);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=d^2=a^6,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,b*d=d*b,d*c*d^-1=a^6*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<