Extensions 1→N→G→Q→1 with N=C2×S3×Dic3 and Q=C2

Direct product G=N×Q with N=C2×S3×Dic3 and Q=C2
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=C2×S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Dic3)⋊1C2 = Dic3⋊D12φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):1C2288,534
(C2×S3×Dic3)⋊2C2 = C62.112C23φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):2C2288,618
(C2×S3×Dic3)⋊3C2 = C2×D12⋊S3φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):3C2288,944
(C2×S3×Dic3)⋊4C2 = S3×D42S3φ: C2/C1C2 ⊆ Out C2×S3×Dic3488-(C2xS3xDic3):4C2288,959
(C2×S3×Dic3)⋊5C2 = C2×D6.4D6φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):5C2288,971
(C2×S3×Dic3)⋊6C2 = C2×S3×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):6C2288,976
(C2×S3×Dic3)⋊7C2 = C62.49C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):7C2288,527
(C2×S3×Dic3)⋊8C2 = Dic34D12φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):8C2288,528
(C2×S3×Dic3)⋊9C2 = C62.51C23φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):9C2288,529
(C2×S3×Dic3)⋊10C2 = C62.54C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):10C2288,532
(C2×S3×Dic3)⋊11C2 = C62.55C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):11C2288,533
(C2×S3×Dic3)⋊12C2 = D6.D12φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):12C2288,538
(C2×S3×Dic3)⋊13C2 = D6.9D12φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):13C2288,539
(C2×S3×Dic3)⋊14C2 = Dic3×D12φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):14C2288,540
(C2×S3×Dic3)⋊15C2 = D12⋊Dic3φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):15C2288,546
(C2×S3×Dic3)⋊16C2 = C62.72C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):16C2288,550
(C2×S3×Dic3)⋊17C2 = S3×D6⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):17C2288,568
(C2×S3×Dic3)⋊18C2 = S3×C6.D4φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):18C2288,616
(C2×S3×Dic3)⋊19C2 = C62.111C23φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):19C2288,617
(C2×S3×Dic3)⋊20C2 = C62.113C23φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):20C2288,619
(C2×S3×Dic3)⋊21C2 = Dic3×C3⋊D4φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):21C2288,620
(C2×S3×Dic3)⋊22C2 = C62.115C23φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):22C2288,621
(C2×S3×Dic3)⋊23C2 = C2×D125S3φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3):23C2288,943
(C2×S3×Dic3)⋊24C2 = C2×D6.3D6φ: C2/C1C2 ⊆ Out C2×S3×Dic348(C2xS3xDic3):24C2288,970
(C2×S3×Dic3)⋊25C2 = S32×C2×C4φ: trivial image48(C2xS3xDic3):25C2288,950

Non-split extensions G=N.Q with N=C2×S3×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×S3×Dic3).1C2 = C62.48C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).1C2288,526
(C2×S3×Dic3).2C2 = D61Dic6φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).2C2288,535
(C2×S3×Dic3).3C2 = D62Dic6φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).3C2288,541
(C2×S3×Dic3).4C2 = C2×S3×Dic6φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).4C2288,942
(C2×S3×Dic3).5C2 = S3×Dic3⋊C4φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).5C2288,524
(C2×S3×Dic3).6C2 = C62.47C23φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).6C2288,525
(C2×S3×Dic3).7C2 = S3×C4⋊Dic3φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).7C2288,537
(C2×S3×Dic3).8C2 = D63Dic6φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).8C2288,544
(C2×S3×Dic3).9C2 = D64Dic6φ: C2/C1C2 ⊆ Out C2×S3×Dic396(C2xS3xDic3).9C2288,547
(C2×S3×Dic3).10C2 = C4×S3×Dic3φ: trivial image96(C2xS3xDic3).10C2288,523

׿
×
𝔽