Copied to
clipboard

G = D6.9D12order 288 = 25·32

6th non-split extension by D6 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: D6.9D12, C62.61C23, D6:C4:4S3, (S3xC6).7D4, C6.15(S3xD4), C6.16(C2xD12), C2.19(S3xD12), (C2xC12).21D6, D6:Dic3:10C2, (C6xC12).4C22, C6.45(C4oD12), C12:Dic3:3C2, C3:3(C23.9D6), (C2xDic3).70D6, (C22xS3).11D6, Dic3:Dic3:15C2, C6.23(D4:2S3), C2.15(D12:5S3), C2.10(D6.4D6), C3:2(C23.21D6), (C6xDic3).63C22, C32:7(C22.D4), (C2xC4).26S32, (C3xD6:C4):4C2, (C2xS3xDic3):13C2, (C3xC6).48(C2xD4), C22.107(C2xS32), (S3xC2xC6).20C22, (C2xD6:S3).3C2, (C3xC6).65(C4oD4), (C2xC6).80(C22xS3), (C2xC3:Dic3).45C22, SmallGroup(288,539)

Series: Derived Chief Lower central Upper central

C1C62 — D6.9D12
C1C3C32C3xC6C62S3xC2xC6C2xS3xDic3 — D6.9D12
C32C62 — D6.9D12
C1C22C2xC4

Generators and relations for D6.9D12
 G = < a,b,c,d | a6=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a3b, dcd=a3c-1 >

Subgroups: 650 in 169 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3xC6, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C22.D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C62, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C6.D4, C3xC22:C4, S3xC2xC4, C22xDic3, C2xC3:D4, S3xDic3, D6:S3, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C23.9D6, C23.21D6, D6:Dic3, Dic3:Dic3, C3xD6:C4, C12:Dic3, C2xS3xDic3, C2xD6:S3, D6.9D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, D12, C22xS3, C22.D4, S32, C2xD12, C4oD12, S3xD4, D4:2S3, C2xS32, C23.9D6, C23.21D6, D12:5S3, S3xD12, D6.4D6, D6.9D12

Smallest permutation representation of D6.9D12
On 96 points
Generators in S96
(1 25 5 29 9 33)(2 26 6 30 10 34)(3 27 7 31 11 35)(4 28 8 32 12 36)(13 79 21 75 17 83)(14 80 22 76 18 84)(15 81 23 77 19 73)(16 82 24 78 20 74)(37 50 45 58 41 54)(38 51 46 59 42 55)(39 52 47 60 43 56)(40 53 48 49 44 57)(61 85 65 89 69 93)(62 86 66 90 70 94)(63 87 67 91 71 95)(64 88 68 92 72 96)
(1 14)(2 77)(3 16)(4 79)(5 18)(6 81)(7 20)(8 83)(9 22)(10 73)(11 24)(12 75)(13 28)(15 30)(17 32)(19 34)(21 36)(23 26)(25 84)(27 74)(29 76)(31 78)(33 80)(35 82)(37 93)(38 66)(39 95)(40 68)(41 85)(42 70)(43 87)(44 72)(45 89)(46 62)(47 91)(48 64)(49 96)(50 69)(51 86)(52 71)(53 88)(54 61)(55 90)(56 63)(57 92)(58 65)(59 94)(60 67)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 51)(2 41)(3 49)(4 39)(5 59)(6 37)(7 57)(8 47)(9 55)(10 45)(11 53)(12 43)(13 87)(14 70)(15 85)(16 68)(17 95)(18 66)(19 93)(20 64)(21 91)(22 62)(23 89)(24 72)(25 46)(26 54)(27 44)(28 52)(29 42)(30 50)(31 40)(32 60)(33 38)(34 58)(35 48)(36 56)(61 73)(63 83)(65 81)(67 79)(69 77)(71 75)(74 88)(76 86)(78 96)(80 94)(82 92)(84 90)

G:=sub<Sym(96)| (1,25,5,29,9,33)(2,26,6,30,10,34)(3,27,7,31,11,35)(4,28,8,32,12,36)(13,79,21,75,17,83)(14,80,22,76,18,84)(15,81,23,77,19,73)(16,82,24,78,20,74)(37,50,45,58,41,54)(38,51,46,59,42,55)(39,52,47,60,43,56)(40,53,48,49,44,57)(61,85,65,89,69,93)(62,86,66,90,70,94)(63,87,67,91,71,95)(64,88,68,92,72,96), (1,14)(2,77)(3,16)(4,79)(5,18)(6,81)(7,20)(8,83)(9,22)(10,73)(11,24)(12,75)(13,28)(15,30)(17,32)(19,34)(21,36)(23,26)(25,84)(27,74)(29,76)(31,78)(33,80)(35,82)(37,93)(38,66)(39,95)(40,68)(41,85)(42,70)(43,87)(44,72)(45,89)(46,62)(47,91)(48,64)(49,96)(50,69)(51,86)(52,71)(53,88)(54,61)(55,90)(56,63)(57,92)(58,65)(59,94)(60,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51)(2,41)(3,49)(4,39)(5,59)(6,37)(7,57)(8,47)(9,55)(10,45)(11,53)(12,43)(13,87)(14,70)(15,85)(16,68)(17,95)(18,66)(19,93)(20,64)(21,91)(22,62)(23,89)(24,72)(25,46)(26,54)(27,44)(28,52)(29,42)(30,50)(31,40)(32,60)(33,38)(34,58)(35,48)(36,56)(61,73)(63,83)(65,81)(67,79)(69,77)(71,75)(74,88)(76,86)(78,96)(80,94)(82,92)(84,90)>;

G:=Group( (1,25,5,29,9,33)(2,26,6,30,10,34)(3,27,7,31,11,35)(4,28,8,32,12,36)(13,79,21,75,17,83)(14,80,22,76,18,84)(15,81,23,77,19,73)(16,82,24,78,20,74)(37,50,45,58,41,54)(38,51,46,59,42,55)(39,52,47,60,43,56)(40,53,48,49,44,57)(61,85,65,89,69,93)(62,86,66,90,70,94)(63,87,67,91,71,95)(64,88,68,92,72,96), (1,14)(2,77)(3,16)(4,79)(5,18)(6,81)(7,20)(8,83)(9,22)(10,73)(11,24)(12,75)(13,28)(15,30)(17,32)(19,34)(21,36)(23,26)(25,84)(27,74)(29,76)(31,78)(33,80)(35,82)(37,93)(38,66)(39,95)(40,68)(41,85)(42,70)(43,87)(44,72)(45,89)(46,62)(47,91)(48,64)(49,96)(50,69)(51,86)(52,71)(53,88)(54,61)(55,90)(56,63)(57,92)(58,65)(59,94)(60,67), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,51)(2,41)(3,49)(4,39)(5,59)(6,37)(7,57)(8,47)(9,55)(10,45)(11,53)(12,43)(13,87)(14,70)(15,85)(16,68)(17,95)(18,66)(19,93)(20,64)(21,91)(22,62)(23,89)(24,72)(25,46)(26,54)(27,44)(28,52)(29,42)(30,50)(31,40)(32,60)(33,38)(34,58)(35,48)(36,56)(61,73)(63,83)(65,81)(67,79)(69,77)(71,75)(74,88)(76,86)(78,96)(80,94)(82,92)(84,90) );

G=PermutationGroup([[(1,25,5,29,9,33),(2,26,6,30,10,34),(3,27,7,31,11,35),(4,28,8,32,12,36),(13,79,21,75,17,83),(14,80,22,76,18,84),(15,81,23,77,19,73),(16,82,24,78,20,74),(37,50,45,58,41,54),(38,51,46,59,42,55),(39,52,47,60,43,56),(40,53,48,49,44,57),(61,85,65,89,69,93),(62,86,66,90,70,94),(63,87,67,91,71,95),(64,88,68,92,72,96)], [(1,14),(2,77),(3,16),(4,79),(5,18),(6,81),(7,20),(8,83),(9,22),(10,73),(11,24),(12,75),(13,28),(15,30),(17,32),(19,34),(21,36),(23,26),(25,84),(27,74),(29,76),(31,78),(33,80),(35,82),(37,93),(38,66),(39,95),(40,68),(41,85),(42,70),(43,87),(44,72),(45,89),(46,62),(47,91),(48,64),(49,96),(50,69),(51,86),(52,71),(53,88),(54,61),(55,90),(56,63),(57,92),(58,65),(59,94),(60,67)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,51),(2,41),(3,49),(4,39),(5,59),(6,37),(7,57),(8,47),(9,55),(10,45),(11,53),(12,43),(13,87),(14,70),(15,85),(16,68),(17,95),(18,66),(19,93),(20,64),(21,91),(22,62),(23,89),(24,72),(25,46),(26,54),(27,44),(28,52),(29,42),(30,50),(31,40),(32,60),(33,38),(34,58),(35,48),(36,56),(61,73),(63,83),(65,81),(67,79),(69,77),(71,75),(74,88),(76,86),(78,96),(80,94),(82,92),(84,90)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G6A···6F6G6H6I6J6K6L6M12A···12H12I12J12K12L
order122222233344444446···6666666612···1212121212
size11116612224466121818362···2444121212124···412121212

42 irreducible representations

dim1111111222222224444444
type+++++++++++++++-+-+-
imageC1C2C2C2C2C2C2S3D4D6D6D6C4oD4D12C4oD12S32S3xD4D4:2S3C2xS32D12:5S3S3xD12D6.4D6
kernelD6.9D12D6:Dic3Dic3:Dic3C3xD6:C4C12:Dic3C2xS3xDic3C2xD6:S3D6:C4S3xC6C2xDic3C2xC12C22xS3C3xC6D6C6C2xC4C6C6C22C2C2C2
# reps1112111222224441131222

Matrix representation of D6.9D12 in GL6(F13)

100000
010000
001000
000100
0000112
000010
,
1200000
0120000
001000
000100
000037
00001010
,
0120000
100000
0011200
001000
0000106
000073
,
100000
0120000
001000
0011200
000029
0000411

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,10,0,0,0,0,7,10],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,0,2,4,0,0,0,0,9,11] >;

D6.9D12 in GAP, Magma, Sage, TeX

D_6._9D_{12}
% in TeX

G:=Group("D6.9D12");
// GroupNames label

G:=SmallGroup(288,539);
// by ID

G=gap.SmallGroup(288,539);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,254,219,142,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^3*b,d*c*d=a^3*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<