Extensions 1→N→G→Q→1 with N=C3xD4:2S3 and Q=C2

Direct product G=NxQ with N=C3xD4:2S3 and Q=C2
dρLabelID
C6xD4:2S348C6xD4:2S3288,993

Semidirect products G=N:Q with N=C3xD4:2S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4:2S3):1C2 = Dic6:3D6φ: C2/C1C2 ⊆ Out C3xD4:2S3488+(C3xD4:2S3):1C2288,573
(C3xD4:2S3):2C2 = D12.22D6φ: C2/C1C2 ⊆ Out C3xD4:2S3488-(C3xD4:2S3):2C2288,581
(C3xD4:2S3):3C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C3xD4:2S3488+(C3xD4:2S3):3C2288,583
(C3xD4:2S3):4C2 = C3xD8:S3φ: C2/C1C2 ⊆ Out C3xD4:2S3484(C3xD4:2S3):4C2288,682
(C3xD4:2S3):5C2 = C3xD8:3S3φ: C2/C1C2 ⊆ Out C3xD4:2S3484(C3xD4:2S3):5C2288,683
(C3xD4:2S3):6C2 = C3xQ8.7D6φ: C2/C1C2 ⊆ Out C3xD4:2S3484(C3xD4:2S3):6C2288,687
(C3xD4:2S3):7C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out C3xD4:2S3488-(C3xD4:2S3):7C2288,957
(C3xD4:2S3):8C2 = S3xD4:2S3φ: C2/C1C2 ⊆ Out C3xD4:2S3488-(C3xD4:2S3):8C2288,959
(C3xD4:2S3):9C2 = Dic6:12D6φ: C2/C1C2 ⊆ Out C3xD4:2S3248+(C3xD4:2S3):9C2288,960
(C3xD4:2S3):10C2 = D12:13D6φ: C2/C1C2 ⊆ Out C3xD4:2S3248+(C3xD4:2S3):10C2288,962
(C3xD4:2S3):11C2 = C3xD4:6D6φ: C2/C1C2 ⊆ Out C3xD4:2S3244(C3xD4:2S3):11C2288,994
(C3xD4:2S3):12C2 = C3xQ8oD12φ: C2/C1C2 ⊆ Out C3xD4:2S3484(C3xD4:2S3):12C2288,1000
(C3xD4:2S3):13C2 = C3xS3xC4oD4φ: trivial image484(C3xD4:2S3):13C2288,998

Non-split extensions G=N.Q with N=C3xD4:2S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD4:2S3).1C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C3xD4:2S3488-(C3xD4:2S3).1C2288,577
(C3xD4:2S3).2C2 = C3xD4.D6φ: C2/C1C2 ⊆ Out C3xD4:2S3484(C3xD4:2S3).2C2288,686

׿
x
:
Z
F
o
wr
Q
<