Extensions 1→N→G→Q→1 with N=C2×C3⋊S4 and Q=C2

Direct product G=N×Q with N=C2×C3⋊S4 and Q=C2
dρLabelID
C22×C3⋊S436C2^2xC3:S4288,1034

Semidirect products G=N:Q with N=C2×C3⋊S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S4)⋊1C2 = Dic3⋊S4φ: C2/C1C2 ⊆ Out C2×C3⋊S4366(C2xC3:S4):1C2288,855
(C2×C3⋊S4)⋊2C2 = A4⋊D12φ: C2/C1C2 ⊆ Out C2×C3⋊S4366+(C2xC3:S4):2C2288,858
(C2×C3⋊S4)⋊3C2 = C12⋊S4φ: C2/C1C2 ⊆ Out C2×C3⋊S4366+(C2xC3:S4):3C2288,909
(C2×C3⋊S4)⋊4C2 = (C2×C6)⋊4S4φ: C2/C1C2 ⊆ Out C2×C3⋊S4366(C2xC3:S4):4C2288,917
(C2×C3⋊S4)⋊5C2 = C2×S3×S4φ: C2/C1C2 ⊆ Out C2×C3⋊S4186+(C2xC3:S4):5C2288,1028

Non-split extensions G=N.Q with N=C2×C3⋊S4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S4).C2 = Dic32S4φ: C2/C1C2 ⊆ Out C2×C3⋊S4366(C2xC3:S4).C2288,854
(C2×C3⋊S4).2C2 = C4×C3⋊S4φ: trivial image366(C2xC3:S4).2C2288,908

׿
×
𝔽