Copied to
clipboard

G = (C2xC6):4S4order 288 = 25·32

2nd semidirect product of C2xC6 and S4 acting via S4/A4=C2

non-abelian, soluble, monomial

Aliases: (C2xC6):4S4, (C3xA4):8D4, C6.38(C2xS4), (C23xC6):4S3, A4:3(C3:D4), C6.7S4:4C2, C22:3(C3:S4), C24:2(C3:S3), (C22xA4):4S3, (C2xA4).12D6, C3:3(A4:D4), C22:(C32:7D4), (C22xC6).23D6, (C6xA4).17C22, (A4xC2xC6):3C2, (C2xC3:S4):4C2, C2.11(C2xC3:S4), (C2xC6):4(C3:D4), C23.5(C2xC3:S3), SmallGroup(288,917)

Series: Derived Chief Lower central Upper central

C1C22C6xA4 — (C2xC6):4S4
C1C22C2xC6C3xA4C6xA4C2xC3:S4 — (C2xC6):4S4
C3xA4C6xA4 — (C2xC6):4S4
C1C2C22

Generators and relations for (C2xC6):4S4
 G = < a,b,c,d,e,f | a2=b6=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, faf=ab3, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 952 in 156 conjugacy classes, 27 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, A4, D6, C2xC6, C2xC6, C22:C4, C2xD4, C24, C3:S3, C3xC6, C2xDic3, C3:D4, S4, C2xA4, C2xA4, C22xS3, C22xC6, C22xC6, C22wrC2, C3:Dic3, C3xA4, C2xC3:S3, C62, C6.D4, A4:C4, C2xC3:D4, C2xS4, C22xA4, C23xC6, C32:7D4, C3:S4, C6xA4, C6xA4, C24:4S3, A4:D4, C6.7S4, C2xC3:S4, A4xC2xC6, (C2xC6):4S4
Quotients: C1, C2, C22, S3, D4, D6, C3:S3, C3:D4, S4, C2xC3:S3, C2xS4, C32:7D4, C3:S4, A4:D4, C2xC3:S4, (C2xC6):4S4

Character table of (C2xC6):4S4

 class 12A2B2C2D2E2F3A3B3C3D4A4B4C6A6B6C6D6E6F6G6H6I6J6K6L6M6N6O6P
 size 1123363628883636362226666888888888
ρ1111111111111111111111111111111    trivial
ρ211-111-1-1111111-1-11-11-1-111-1-1-1-1-111-1    linear of order 2
ρ3111111-11111-1-1-11111111111111111    linear of order 2
ρ411-111-111111-1-11-11-11-1-111-1-1-1-1-111-1    linear of order 2
ρ522-222-20-1-12-10001-11-111-1-1111-21-12-2    orthogonal lifted from D6
ρ62222220-12-1-1000-1-1-1-1-1-1-1-1-12-1-122-1-1    orthogonal lifted from S3
ρ722-222-202-1-1-1000-22-22-2-22-111111-1-11    orthogonal lifted from D6
ρ822-222-20-12-1-10001-11-111-1-11-211-22-11    orthogonal lifted from D6
ρ922222202-1-1-10002222222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ102-20-220022220000-20200-2-200000-2-20    orthogonal lifted from D4
ρ112222220-1-1-12000-1-1-1-1-1-1-122-12-1-1-1-1-1    orthogonal lifted from S3
ρ122222220-1-12-1000-1-1-1-1-1-1-1-1-1-1-12-1-122    orthogonal lifted from S3
ρ1322-222-20-1-1-120001-11-111-12-21-211-1-11    orthogonal lifted from D6
ρ142-20-2200-1-12-1000--31-3-1-3--311-3-3--30--31-20    complex lifted from C3:D4
ρ152-20-2200-12-1-1000-31--3-1--3-311-30--3-30-21--3    complex lifted from C3:D4
ρ162-20-22002-1-1-10000-20200-21--3-3-3-3--311--3    complex lifted from C3:D4
ρ172-20-2200-12-1-1000--31-3-1-3--311--30-3--30-21-3    complex lifted from C3:D4
ρ182-20-2200-1-1-12000-31--3-1--3-31-20-30--3--311-3    complex lifted from C3:D4
ρ192-20-2200-1-1-12000--31-3-1-3--31-20--30-3-311--3    complex lifted from C3:D4
ρ202-20-2200-1-12-1000-31--3-1--3-311--3--3-30-31-20    complex lifted from C3:D4
ρ212-20-22002-1-1-10000-20200-21-3--3--3--3-311-3    complex lifted from C3:D4
ρ22333-1-1-113000-11-1333-1-1-1-1000000000    orthogonal lifted from S4
ρ2333-3-1-11130001-1-1-33-3-111-1000000000    orthogonal lifted from C2xS4
ρ24333-1-1-1-130001-11333-1-1-1-1000000000    orthogonal lifted from S4
ρ2533-3-1-11-13000-111-33-3-111-1000000000    orthogonal lifted from C2xS4
ρ26666-2-2-20-3000000-3-3-31111000000000    orthogonal lifted from C3:S4
ρ2766-6-2-220-30000003-331-1-11000000000    orthogonal lifted from C2xC3:S4
ρ286-602-20060000000-60-2002000000000    orthogonal lifted from A4:D4
ρ296-602-200-30000003-33-3-31-3--3-1000000000    complex faithful
ρ306-602-200-3000000-3-333-31--3-3-1000000000    complex faithful

Smallest permutation representation of (C2xC6):4S4
On 36 points
Generators in S36
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 36)(8 31)(9 32)(10 33)(11 34)(12 35)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 15)(2 16)(3 17)(4 18)(5 13)(6 14)(7 10)(8 11)(9 12)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)(31 34)(32 35)(33 36)
(1 4)(2 5)(3 6)(7 36)(8 31)(9 32)(10 33)(11 34)(12 35)(13 16)(14 17)(15 18)(19 28)(20 29)(21 30)(22 25)(23 26)(24 27)
(1 26 9)(2 27 10)(3 28 11)(4 29 12)(5 30 7)(6 25 8)(13 21 33)(14 22 34)(15 23 35)(16 24 36)(17 19 31)(18 20 32)
(2 6)(3 5)(7 28)(8 27)(9 26)(10 25)(11 30)(12 29)(13 14)(15 18)(16 17)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)

G:=sub<Sym(36)| (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(7,10)(8,11)(9,12)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,26,9)(2,27,10)(3,28,11)(4,29,12)(5,30,7)(6,25,8)(13,21,33)(14,22,34)(15,23,35)(16,24,36)(17,19,31)(18,20,32), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,14)(15,18)(16,17)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)>;

G:=Group( (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,15)(2,16)(3,17)(4,18)(5,13)(6,14)(7,10)(8,11)(9,12)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(13,16)(14,17)(15,18)(19,28)(20,29)(21,30)(22,25)(23,26)(24,27), (1,26,9)(2,27,10)(3,28,11)(4,29,12)(5,30,7)(6,25,8)(13,21,33)(14,22,34)(15,23,35)(16,24,36)(17,19,31)(18,20,32), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,14)(15,18)(16,17)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31) );

G=PermutationGroup([[(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,36),(8,31),(9,32),(10,33),(11,34),(12,35),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,15),(2,16),(3,17),(4,18),(5,13),(6,14),(7,10),(8,11),(9,12),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30),(31,34),(32,35),(33,36)], [(1,4),(2,5),(3,6),(7,36),(8,31),(9,32),(10,33),(11,34),(12,35),(13,16),(14,17),(15,18),(19,28),(20,29),(21,30),(22,25),(23,26),(24,27)], [(1,26,9),(2,27,10),(3,28,11),(4,29,12),(5,30,7),(6,25,8),(13,21,33),(14,22,34),(15,23,35),(16,24,36),(17,19,31),(18,20,32)], [(2,6),(3,5),(7,28),(8,27),(9,26),(10,25),(11,30),(12,29),(13,14),(15,18),(16,17),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31)]])

Matrix representation of (C2xC6):4S4 in GL5(F13)

10000
012000
001200
000120
000012
,
40000
010000
00100
00010
00001
,
10000
01000
001200
000120
00001
,
10000
01000
00100
000120
000012
,
10000
01000
00001
00100
00010
,
01000
10000
00100
00001
00010

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,0,0,0,0,0,10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

(C2xC6):4S4 in GAP, Magma, Sage, TeX

(C_2\times C_6)\rtimes_4S_4
% in TeX

G:=Group("(C2xC6):4S4");
// GroupNames label

G:=SmallGroup(288,917);
// by ID

G=gap.SmallGroup(288,917);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,85,451,1684,6053,782,3534,1350]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^6=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a*b^3,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of (C2xC6):4S4 in TeX

׿
x
:
Z
F
o
wr
Q
<