Copied to
clipboard

G = C152F5order 300 = 22·3·52

2nd semidirect product of C15 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, A-group

Aliases: C152F5, C526Dic3, (C5×C15)⋊4C4, C3⋊(C52⋊C4), C52(C3⋊F5), C5⋊D5.3S3, (C3×C5⋊D5).2C2, SmallGroup(300,35)

Series: Derived Chief Lower central Upper central

C1C5×C15 — C152F5
C1C5C52C5×C15C3×C5⋊D5 — C152F5
C5×C15 — C152F5
C1

Generators and relations for C152F5
 G = < a,b,c | a15=b5=c4=1, ab=ba, cac-1=a2, cbc-1=b3 >

25C2
2C5
2C5
75C4
25C6
5D5
5D5
10D5
10D5
2C15
2C15
25Dic3
15F5
15F5
5C3×D5
5C3×D5
10C3×D5
10C3×D5
5C3⋊F5
5C3⋊F5
3C52⋊C4

Character table of C152F5

 class 1234A4B5A5B5C5D5E5F615A15B15C15D15E15F15G15H15I15J15K15L
 size 1252757544444450444444444444
ρ1111111111111111111111111    trivial
ρ2111-1-11111111111111111111    linear of order 2
ρ31-11-ii111111-1111111111111    linear of order 4
ρ41-11i-i111111-1111111111111    linear of order 4
ρ522-100222222-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-2-1002222221-1-1-1-1-1-1-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ740400-1-1-14-1-10-1-1-14-1-1-1-1-1-1-14    orthogonal lifted from F5
ρ840400-1-14-1-1-10-1-1-1-1-1-1-1-14-14-1    orthogonal lifted from F5
ρ9404003+5/2-1-5-1-1-1+53-5/20-1+53+5/2-1-5-13-5/2-1-5-1+53+5/2-13-5/2-1-1    orthogonal lifted from C52⋊C4
ρ1040400-1-53-5/2-1-13+5/2-1+503+5/2-1-53-5/2-1-1+53-5/23+5/2-1-5-1-1+5-1-1    orthogonal lifted from C52⋊C4
ρ11404003-5/2-1+5-1-1-1-53+5/20-1-53-5/2-1+5-13+5/2-1+5-1-53-5/2-13+5/2-1-1    orthogonal lifted from C52⋊C4
ρ1240400-1+53+5/2-1-13-5/2-1-503-5/2-1+53+5/2-1-1-53+5/23-5/2-1+5-1-1-5-1-1    orthogonal lifted from C52⋊C4
ρ1340-2003-5/2-1+5-1-1-1-53+5/201+5/2ζ32ζ5332ζ52-2ζ32-21-5/21+-15/2ζ32ζ5432ζ5-2ζ32-21-5/21+5/2ζ3ζ533ζ52-2ζ3-21+-15/2ζ3ζ543ζ5-2ζ3-21--15/21--15/2    complex faithful
ρ1440-200-1+53+5/2-1-13-5/2-1-50ζ3ζ533ζ52-2ζ3-21-5/2ζ32ζ5432ζ5-2ζ32-21--15/21+5/2ζ3ζ543ζ5-2ζ3-2ζ32ζ5332ζ52-2ζ32-21-5/21+-15/21+5/21--15/21+-15/2    complex faithful
ρ1540-2003+5/2-1-5-1-1-1+53-5/201-5/2ζ3ζ543ζ5-2ζ3-21+5/21+-15/2ζ3ζ533ζ52-2ζ3-21+5/21-5/2ζ32ζ5432ζ5-2ζ32-21+-15/2ζ32ζ5332ζ52-2ζ32-21--15/21--15/2    complex faithful
ρ1640-200-1-53-5/2-1-13+5/2-1+50ζ3ζ543ζ5-2ζ3-21+5/2ζ32ζ5332ζ52-2ζ32-21+-15/21-5/2ζ3ζ533ζ52-2ζ3-2ζ32ζ5432ζ5-2ζ32-21+5/21--15/21-5/21+-15/21--15/2    complex faithful
ρ1740-200-1-1-14-1-101+-15/21--15/21+-15/2-21+-15/21--15/21--15/21+-15/21+-15/21--15/21--15/2-2    complex lifted from C3⋊F5
ρ1840-200-1-14-1-1-101+-15/21+-15/21+-15/21--15/21--15/21--15/21--15/21--15/2-21+-15/2-21+-15/2    complex lifted from C3⋊F5
ρ1940-2003+5/2-1-5-1-1-1+53-5/201-5/2ζ32ζ5432ζ5-2ζ32-21+5/21--15/2ζ32ζ5332ζ52-2ζ32-21+5/21-5/2ζ3ζ543ζ5-2ζ3-21--15/2ζ3ζ533ζ52-2ζ3-21+-15/21+-15/2    complex faithful
ρ2040-200-1-53-5/2-1-13+5/2-1+50ζ32ζ5432ζ5-2ζ32-21+5/2ζ3ζ533ζ52-2ζ3-21--15/21-5/2ζ32ζ5332ζ52-2ζ32-2ζ3ζ543ζ5-2ζ3-21+5/21+-15/21-5/21--15/21+-15/2    complex faithful
ρ2140-200-1-14-1-1-101--15/21--15/21--15/21+-15/21+-15/21+-15/21+-15/21+-15/2-21--15/2-21--15/2    complex lifted from C3⋊F5
ρ2240-200-1+53+5/2-1-13-5/2-1-50ζ32ζ5332ζ52-2ζ32-21-5/2ζ3ζ543ζ5-2ζ3-21+-15/21+5/2ζ32ζ5432ζ5-2ζ32-2ζ3ζ533ζ52-2ζ3-21-5/21--15/21+5/21+-15/21--15/2    complex faithful
ρ2340-2003-5/2-1+5-1-1-1-53+5/201+5/2ζ3ζ533ζ52-2ζ3-21-5/21--15/2ζ3ζ543ζ5-2ζ3-21-5/21+5/2ζ32ζ5332ζ52-2ζ32-21--15/2ζ32ζ5432ζ5-2ζ32-21+-15/21+-15/2    complex faithful
ρ2440-200-1-1-14-1-101--15/21+-15/21--15/2-21--15/21+-15/21+-15/21--15/21--15/21+-15/21+-15/2-2    complex lifted from C3⋊F5

Permutation representations of C152F5
On 30 points - transitive group 30T76
Generators in S30
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 4 7 10 13)(2 5 8 11 14)(3 6 9 12 15)(16 28 25 22 19)(17 29 26 23 20)(18 30 27 24 21)
(1 20)(2 28 5 22)(3 21 9 24)(4 29 13 26)(6 30)(7 23 10 17)(8 16 14 19)(11 25)(12 18 15 27)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15)(16,28,25,22,19)(17,29,26,23,20)(18,30,27,24,21), (1,20)(2,28,5,22)(3,21,9,24)(4,29,13,26)(6,30)(7,23,10,17)(8,16,14,19)(11,25)(12,18,15,27)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15)(16,28,25,22,19)(17,29,26,23,20)(18,30,27,24,21), (1,20)(2,28,5,22)(3,21,9,24)(4,29,13,26)(6,30)(7,23,10,17)(8,16,14,19)(11,25)(12,18,15,27) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,4,7,10,13),(2,5,8,11,14),(3,6,9,12,15),(16,28,25,22,19),(17,29,26,23,20),(18,30,27,24,21)], [(1,20),(2,28,5,22),(3,21,9,24),(4,29,13,26),(6,30),(7,23,10,17),(8,16,14,19),(11,25),(12,18,15,27)]])

G:=TransitiveGroup(30,76);

Matrix representation of C152F5 in GL4(𝔽61) generated by

053402
5582639
003813
00480
,
0184360
44431817
00060
00117
,
17101
604300
164311
604400
G:=sub<GL(4,GF(61))| [0,55,0,0,53,8,0,0,40,26,38,48,2,39,13,0],[0,44,0,0,18,43,0,0,43,18,0,1,60,17,60,17],[17,60,16,60,1,43,43,44,0,0,1,0,1,0,1,0] >;

C152F5 in GAP, Magma, Sage, TeX

C_{15}\rtimes_2F_5
% in TeX

G:=Group("C15:2F5");
// GroupNames label

G:=SmallGroup(300,35);
// by ID

G=gap.SmallGroup(300,35);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,10,122,483,488,4504,3009]);
// Polycyclic

G:=Group<a,b,c|a^15=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C152F5 in TeX
Character table of C152F5 in TeX

׿
×
𝔽