Copied to
clipboard

G = C15⋊F5order 300 = 22·3·52

1st semidirect product of C15 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, A-group

Aliases: C151F5, C525Dic3, (C5×C15)⋊3C4, C51(C3⋊F5), C3⋊(C5⋊F5), C5⋊D5.2S3, (C3×C5⋊D5).1C2, SmallGroup(300,34)

Series: Derived Chief Lower central Upper central

C1C5×C15 — C15⋊F5
C1C5C52C5×C15C3×C5⋊D5 — C15⋊F5
C5×C15 — C15⋊F5
C1

Generators and relations for C15⋊F5
 G = < a,b,c | a15=b5=c4=1, ab=ba, cac-1=a8, cbc-1=b3 >

25C2
75C4
25C6
5D5
5D5
5D5
5D5
5D5
5D5
25Dic3
15F5
15F5
15F5
15F5
15F5
15F5
5C3×D5
5C3×D5
5C3×D5
5C3×D5
5C3×D5
5C3×D5
5C3⋊F5
5C3⋊F5
5C3⋊F5
5C3⋊F5
5C3⋊F5
5C3⋊F5
3C5⋊F5

Character table of C15⋊F5

 class 1234A4B5A5B5C5D5E5F615A15B15C15D15E15F15G15H15I15J15K15L
 size 1252757544444450444444444444
ρ1111111111111111111111111    trivial
ρ2111-1-11111111111111111111    linear of order 2
ρ31-11-ii111111-1111111111111    linear of order 4
ρ41-11i-i111111-1111111111111    linear of order 4
ρ522-100222222-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-2-1002222221-1-1-1-1-1-1-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ740400-1-1-1-14-104-1-1-1-14-1-1-1-1-1-1    orthogonal lifted from F5
ρ840400-1-1-14-1-10-1-1-14-1-1-1-1-1-1-14    orthogonal lifted from F5
ρ940400-1-14-1-1-10-1-1-1-1-1-1-1-14-14-1    orthogonal lifted from F5
ρ1040400-1-1-1-1-140-1-1-1-1-1-1-14-14-1-1    orthogonal lifted from F5
ρ11404004-1-1-1-1-10-14-1-14-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ1240400-14-1-1-1-10-1-14-1-1-14-1-1-1-1-1    orthogonal lifted from F5
ρ1340-200-1-1-14-1-101+-15/21--15/21+-15/2-21+-15/21--15/21--15/21+-15/21+-15/21--15/21--15/2-2    complex lifted from C3⋊F5
ρ1440-200-1-1-1-1-1401--15/21--15/21+-15/21--15/21+-15/21+-15/21--15/2-21--15/2-21+-15/21+-15/2    complex lifted from C3⋊F5
ρ1540-200-1-1-1-14-10-21--15/21--15/21--15/21+-15/2-21+-15/21--15/21+-15/21+-15/21--15/21+-15/2    complex lifted from C3⋊F5
ρ1640-200-1-14-1-1-101+-15/21+-15/21+-15/21--15/21--15/21--15/21--15/21--15/2-21+-15/2-21+-15/2    complex lifted from C3⋊F5
ρ1740-2004-1-1-1-1-101+-15/2-21--15/21--15/2-21--15/21+-15/21+-15/21--15/21--15/21+-15/21+-15/2    complex lifted from C3⋊F5
ρ1840-200-1-1-1-14-10-21+-15/21+-15/21+-15/21--15/2-21--15/21+-15/21--15/21--15/21+-15/21--15/2    complex lifted from C3⋊F5
ρ1940-200-14-1-1-1-101--15/21+-15/2-21--15/21--15/21+-15/2-21+-15/21+-15/21--15/21--15/21+-15/2    complex lifted from C3⋊F5
ρ2040-2004-1-1-1-1-101--15/2-21+-15/21+-15/2-21+-15/21--15/21--15/21+-15/21+-15/21--15/21--15/2    complex lifted from C3⋊F5
ρ2140-200-1-14-1-1-101--15/21--15/21--15/21+-15/21+-15/21+-15/21+-15/21+-15/2-21--15/2-21--15/2    complex lifted from C3⋊F5
ρ2240-200-1-1-1-1-1401+-15/21+-15/21--15/21+-15/21--15/21--15/21+-15/2-21+-15/2-21--15/21--15/2    complex lifted from C3⋊F5
ρ2340-200-14-1-1-1-101+-15/21--15/2-21+-15/21+-15/21--15/2-21--15/21--15/21+-15/21+-15/21--15/2    complex lifted from C3⋊F5
ρ2440-200-1-1-14-1-101--15/21+-15/21--15/2-21--15/21+-15/21+-15/21--15/21--15/21+-15/21+-15/2-2    complex lifted from C3⋊F5

Smallest permutation representation of C15⋊F5
On 75 points
Generators in S75
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(1 53 25 61 33)(2 54 26 62 34)(3 55 27 63 35)(4 56 28 64 36)(5 57 29 65 37)(6 58 30 66 38)(7 59 16 67 39)(8 60 17 68 40)(9 46 18 69 41)(10 47 19 70 42)(11 48 20 71 43)(12 49 21 72 44)(13 50 22 73 45)(14 51 23 74 31)(15 52 24 75 32)
(2 3 5 9)(4 7 13 10)(6 11)(8 15 14 12)(16 45 70 56)(17 32 74 49)(18 34 63 57)(19 36 67 50)(20 38 71 58)(21 40 75 51)(22 42 64 59)(23 44 68 52)(24 31 72 60)(25 33 61 53)(26 35 65 46)(27 37 69 54)(28 39 73 47)(29 41 62 55)(30 43 66 48)

G:=sub<Sym(75)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,53,25,61,33)(2,54,26,62,34)(3,55,27,63,35)(4,56,28,64,36)(5,57,29,65,37)(6,58,30,66,38)(7,59,16,67,39)(8,60,17,68,40)(9,46,18,69,41)(10,47,19,70,42)(11,48,20,71,43)(12,49,21,72,44)(13,50,22,73,45)(14,51,23,74,31)(15,52,24,75,32), (2,3,5,9)(4,7,13,10)(6,11)(8,15,14,12)(16,45,70,56)(17,32,74,49)(18,34,63,57)(19,36,67,50)(20,38,71,58)(21,40,75,51)(22,42,64,59)(23,44,68,52)(24,31,72,60)(25,33,61,53)(26,35,65,46)(27,37,69,54)(28,39,73,47)(29,41,62,55)(30,43,66,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,53,25,61,33)(2,54,26,62,34)(3,55,27,63,35)(4,56,28,64,36)(5,57,29,65,37)(6,58,30,66,38)(7,59,16,67,39)(8,60,17,68,40)(9,46,18,69,41)(10,47,19,70,42)(11,48,20,71,43)(12,49,21,72,44)(13,50,22,73,45)(14,51,23,74,31)(15,52,24,75,32), (2,3,5,9)(4,7,13,10)(6,11)(8,15,14,12)(16,45,70,56)(17,32,74,49)(18,34,63,57)(19,36,67,50)(20,38,71,58)(21,40,75,51)(22,42,64,59)(23,44,68,52)(24,31,72,60)(25,33,61,53)(26,35,65,46)(27,37,69,54)(28,39,73,47)(29,41,62,55)(30,43,66,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(1,53,25,61,33),(2,54,26,62,34),(3,55,27,63,35),(4,56,28,64,36),(5,57,29,65,37),(6,58,30,66,38),(7,59,16,67,39),(8,60,17,68,40),(9,46,18,69,41),(10,47,19,70,42),(11,48,20,71,43),(12,49,21,72,44),(13,50,22,73,45),(14,51,23,74,31),(15,52,24,75,32)], [(2,3,5,9),(4,7,13,10),(6,11),(8,15,14,12),(16,45,70,56),(17,32,74,49),(18,34,63,57),(19,36,67,50),(20,38,71,58),(21,40,75,51),(22,42,64,59),(23,44,68,52),(24,31,72,60),(25,33,61,53),(26,35,65,46),(27,37,69,54),(28,39,73,47),(29,41,62,55),(30,43,66,48)]])

Matrix representation of C15⋊F5 in GL8(𝔽61)

10000000
01000000
00100000
00010000
00005534276
00005528033
0000028556
00002734550
,
606060600000
10000000
01000000
00100000
00001000
00000100
00000010
00000001
,
10000000
00010000
01000000
606060600000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,55,55,0,27,0,0,0,0,34,28,28,34,0,0,0,0,27,0,55,55,0,0,0,0,6,33,6,0],[60,1,0,0,0,0,0,0,60,0,1,0,0,0,0,0,60,0,0,1,0,0,0,0,60,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

C15⋊F5 in GAP, Magma, Sage, TeX

C_{15}\rtimes F_5
% in TeX

G:=Group("C15:F5");
// GroupNames label

G:=SmallGroup(300,34);
// by ID

G=gap.SmallGroup(300,34);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,10,122,723,488,4504,3009]);
// Polycyclic

G:=Group<a,b,c|a^15=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^8,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C15⋊F5 in TeX
Character table of C15⋊F5 in TeX

׿
×
𝔽