Copied to
clipboard

G = C15×C7⋊C3order 315 = 32·5·7

Direct product of C15 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary

Aliases: C15×C7⋊C3, C105⋊C3, C21⋊C15, C35⋊C32, C7⋊(C3×C15), SmallGroup(315,3)

Series: Derived Chief Lower central Upper central

C1C7 — C15×C7⋊C3
C1C7C35C5×C7⋊C3 — C15×C7⋊C3
C7 — C15×C7⋊C3
C1C15

Generators and relations for C15×C7⋊C3
 G = < a,b,c | a15=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
7C3
7C3
7C32
7C15
7C15
7C15
7C3×C15

Smallest permutation representation of C15×C7⋊C3
On 105 points
Generators in S105
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 59 102 20 35 74 81)(2 60 103 21 36 75 82)(3 46 104 22 37 61 83)(4 47 105 23 38 62 84)(5 48 91 24 39 63 85)(6 49 92 25 40 64 86)(7 50 93 26 41 65 87)(8 51 94 27 42 66 88)(9 52 95 28 43 67 89)(10 53 96 29 44 68 90)(11 54 97 30 45 69 76)(12 55 98 16 31 70 77)(13 56 99 17 32 71 78)(14 57 100 18 33 72 79)(15 58 101 19 34 73 80)
(16 77 70)(17 78 71)(18 79 72)(19 80 73)(20 81 74)(21 82 75)(22 83 61)(23 84 62)(24 85 63)(25 86 64)(26 87 65)(27 88 66)(28 89 67)(29 90 68)(30 76 69)(31 55 98)(32 56 99)(33 57 100)(34 58 101)(35 59 102)(36 60 103)(37 46 104)(38 47 105)(39 48 91)(40 49 92)(41 50 93)(42 51 94)(43 52 95)(44 53 96)(45 54 97)

G:=sub<Sym(105)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,59,102,20,35,74,81)(2,60,103,21,36,75,82)(3,46,104,22,37,61,83)(4,47,105,23,38,62,84)(5,48,91,24,39,63,85)(6,49,92,25,40,64,86)(7,50,93,26,41,65,87)(8,51,94,27,42,66,88)(9,52,95,28,43,67,89)(10,53,96,29,44,68,90)(11,54,97,30,45,69,76)(12,55,98,16,31,70,77)(13,56,99,17,32,71,78)(14,57,100,18,33,72,79)(15,58,101,19,34,73,80), (16,77,70)(17,78,71)(18,79,72)(19,80,73)(20,81,74)(21,82,75)(22,83,61)(23,84,62)(24,85,63)(25,86,64)(26,87,65)(27,88,66)(28,89,67)(29,90,68)(30,76,69)(31,55,98)(32,56,99)(33,57,100)(34,58,101)(35,59,102)(36,60,103)(37,46,104)(38,47,105)(39,48,91)(40,49,92)(41,50,93)(42,51,94)(43,52,95)(44,53,96)(45,54,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,59,102,20,35,74,81)(2,60,103,21,36,75,82)(3,46,104,22,37,61,83)(4,47,105,23,38,62,84)(5,48,91,24,39,63,85)(6,49,92,25,40,64,86)(7,50,93,26,41,65,87)(8,51,94,27,42,66,88)(9,52,95,28,43,67,89)(10,53,96,29,44,68,90)(11,54,97,30,45,69,76)(12,55,98,16,31,70,77)(13,56,99,17,32,71,78)(14,57,100,18,33,72,79)(15,58,101,19,34,73,80), (16,77,70)(17,78,71)(18,79,72)(19,80,73)(20,81,74)(21,82,75)(22,83,61)(23,84,62)(24,85,63)(25,86,64)(26,87,65)(27,88,66)(28,89,67)(29,90,68)(30,76,69)(31,55,98)(32,56,99)(33,57,100)(34,58,101)(35,59,102)(36,60,103)(37,46,104)(38,47,105)(39,48,91)(40,49,92)(41,50,93)(42,51,94)(43,52,95)(44,53,96)(45,54,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,59,102,20,35,74,81),(2,60,103,21,36,75,82),(3,46,104,22,37,61,83),(4,47,105,23,38,62,84),(5,48,91,24,39,63,85),(6,49,92,25,40,64,86),(7,50,93,26,41,65,87),(8,51,94,27,42,66,88),(9,52,95,28,43,67,89),(10,53,96,29,44,68,90),(11,54,97,30,45,69,76),(12,55,98,16,31,70,77),(13,56,99,17,32,71,78),(14,57,100,18,33,72,79),(15,58,101,19,34,73,80)], [(16,77,70),(17,78,71),(18,79,72),(19,80,73),(20,81,74),(21,82,75),(22,83,61),(23,84,62),(24,85,63),(25,86,64),(26,87,65),(27,88,66),(28,89,67),(29,90,68),(30,76,69),(31,55,98),(32,56,99),(33,57,100),(34,58,101),(35,59,102),(36,60,103),(37,46,104),(38,47,105),(39,48,91),(40,49,92),(41,50,93),(42,51,94),(43,52,95),(44,53,96),(45,54,97)]])

75 conjugacy classes

class 1 3A3B3C···3H5A5B5C5D7A7B15A···15H15I···15AF21A21B21C21D35A···35H105A···105P
order1333···355557715···1515···152121212135···35105···105
size1117···71111331···17···733333···33···3

75 irreducible representations

dim1111113333
type+
imageC1C3C3C5C15C15C7⋊C3C3×C7⋊C3C5×C7⋊C3C15×C7⋊C3
kernelC15×C7⋊C3C5×C7⋊C3C105C3×C7⋊C3C7⋊C3C21C15C5C3C1
# reps162424824816

Matrix representation of C15×C7⋊C3 in GL4(𝔽211) generated by

14000
018800
001880
000188
,
1000
0210201
00201
0210211
,
14000
0211191
0100
011190
G:=sub<GL(4,GF(211))| [14,0,0,0,0,188,0,0,0,0,188,0,0,0,0,188],[1,0,0,0,0,210,0,210,0,20,20,21,0,1,1,1],[14,0,0,0,0,21,1,1,0,1,0,1,0,191,0,190] >;

C15×C7⋊C3 in GAP, Magma, Sage, TeX

C_{15}\times C_7\rtimes C_3
% in TeX

G:=Group("C15xC7:C3");
// GroupNames label

G:=SmallGroup(315,3);
// by ID

G=gap.SmallGroup(315,3);
# by ID

G:=PCGroup([4,-3,-3,-5,-7,1443]);
// Polycyclic

G:=Group<a,b,c|a^15=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C15×C7⋊C3 in TeX

׿
×
𝔽