Copied to
clipboard

G = C2×C37⋊C4order 296 = 23·37

Direct product of C2 and C37⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C37⋊C4, C74⋊C4, D37⋊C4, D74.C2, D37.C22, C37⋊(C2×C4), SmallGroup(296,12)

Series: Derived Chief Lower central Upper central

C1C37 — C2×C37⋊C4
C1C37D37C37⋊C4 — C2×C37⋊C4
C37 — C2×C37⋊C4
C1C2

Generators and relations for C2×C37⋊C4
 G = < a,b,c | a2=b37=c4=1, ab=ba, ac=ca, cbc-1=b6 >

37C2
37C2
37C4
37C22
37C4
37C2×C4

Character table of C2×C37⋊C4

 class 12A2B2C4A4B4C4D37A37B37C37D37E37F37G37H37I74A74B74C74D74E74F74G74H74I
 size 11373737373737444444444444444444
ρ111111111111111111111111111    trivial
ρ21-11-1-11-11111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ31-11-11-11-1111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-1-1-1111111111111111111    linear of order 2
ρ511-1-1-i-iii111111111111111111    linear of order 4
ρ61-1-11i-i-ii111111111-1-1-1-1-1-1-1-1-1    linear of order 4
ρ711-1-1ii-i-i111111111111111111    linear of order 4
ρ81-1-11-iii-i111111111-1-1-1-1-1-1-1-1-1    linear of order 4
ρ94-4000000ζ3722372137163715ζ373337243713374ζ372837203717379ζ373437193718373ζ3727372337143710ζ3736373137637ζ372937263711378ζ373537253712372ζ3732373037737537353725371237237323730377375372237213716371537333724371337437283720371737937343719371837337273723371437103736373137637372937263711378    orthogonal faithful
ρ104-4000000ζ372937263711378ζ373537253712372ζ3727372337143710ζ372837203717379ζ37323730377375ζ373437193718373ζ373337243713374ζ3736373137637ζ372237213716371537363731376373722372137163715372937263711378373537253712372372737233714371037283720371737937323730377375373437193718373373337243713374    orthogonal faithful
ρ114-4000000ζ3736373137637ζ372837203717379ζ372937263711378ζ3722372137163715ζ373337243713374ζ37323730377375ζ373437193718373ζ3727372337143710ζ37353725371237237273723371437103735372537123723736373137637372837203717379372937263711378372237213716371537333724371337437323730377375373437193718373    orthogonal faithful
ρ1244000000ζ372837203717379ζ37323730377375ζ373537253712372ζ373337243713374ζ3736373137637ζ372937263711378ζ3727372337143710ζ3722372137163715ζ373437193718373ζ3722372137163715ζ373437193718373ζ372837203717379ζ37323730377375ζ373537253712372ζ373337243713374ζ3736373137637ζ372937263711378ζ3727372337143710    orthogonal lifted from C37⋊C4
ρ1344000000ζ373437193718373ζ3727372337143710ζ373337243713374ζ372937263711378ζ373537253712372ζ3722372137163715ζ372837203717379ζ37323730377375ζ3736373137637ζ37323730377375ζ3736373137637ζ373437193718373ζ3727372337143710ζ373337243713374ζ372937263711378ζ373537253712372ζ3722372137163715ζ372837203717379    orthogonal lifted from C37⋊C4
ρ144-4000000ζ373337243713374ζ3736373137637ζ37323730377375ζ3727372337143710ζ3722372137163715ζ372837203717379ζ373537253712372ζ373437193718373ζ37293726371137837343719371837337293726371137837333724371337437363731376373732373037737537273723371437103722372137163715372837203717379373537253712372    orthogonal faithful
ρ1544000000ζ3736373137637ζ372837203717379ζ372937263711378ζ3722372137163715ζ373337243713374ζ37323730377375ζ373437193718373ζ3727372337143710ζ373537253712372ζ3727372337143710ζ373537253712372ζ3736373137637ζ372837203717379ζ372937263711378ζ3722372137163715ζ373337243713374ζ37323730377375ζ373437193718373    orthogonal lifted from C37⋊C4
ρ1644000000ζ37323730377375ζ372937263711378ζ373437193718373ζ3736373137637ζ372837203717379ζ373537253712372ζ3722372137163715ζ373337243713374ζ3727372337143710ζ373337243713374ζ3727372337143710ζ37323730377375ζ372937263711378ζ373437193718373ζ3736373137637ζ372837203717379ζ373537253712372ζ3722372137163715    orthogonal lifted from C37⋊C4
ρ174-4000000ζ373537253712372ζ373437193718373ζ3722372137163715ζ37323730377375ζ372937263711378ζ3727372337143710ζ3736373137637ζ372837203717379ζ37333724371337437283720371737937333724371337437353725371237237343719371837337223721371637153732373037737537293726371137837273723371437103736373137637    orthogonal faithful
ρ1844000000ζ373537253712372ζ373437193718373ζ3722372137163715ζ37323730377375ζ372937263711378ζ3727372337143710ζ3736373137637ζ372837203717379ζ373337243713374ζ372837203717379ζ373337243713374ζ373537253712372ζ373437193718373ζ3722372137163715ζ37323730377375ζ372937263711378ζ3727372337143710ζ3736373137637    orthogonal lifted from C37⋊C4
ρ1944000000ζ373337243713374ζ3736373137637ζ37323730377375ζ3727372337143710ζ3722372137163715ζ372837203717379ζ373537253712372ζ373437193718373ζ372937263711378ζ373437193718373ζ372937263711378ζ373337243713374ζ3736373137637ζ37323730377375ζ3727372337143710ζ3722372137163715ζ372837203717379ζ373537253712372    orthogonal lifted from C37⋊C4
ρ204-4000000ζ3727372337143710ζ3722372137163715ζ3736373137637ζ373537253712372ζ373437193718373ζ373337243713374ζ37323730377375ζ372937263711378ζ37283720371737937293726371137837283720371737937273723371437103722372137163715373637313763737353725371237237343719371837337333724371337437323730377375    orthogonal faithful
ρ2144000000ζ3727372337143710ζ3722372137163715ζ3736373137637ζ373537253712372ζ373437193718373ζ373337243713374ζ37323730377375ζ372937263711378ζ372837203717379ζ372937263711378ζ372837203717379ζ3727372337143710ζ3722372137163715ζ3736373137637ζ373537253712372ζ373437193718373ζ373337243713374ζ37323730377375    orthogonal lifted from C37⋊C4
ρ224-4000000ζ37323730377375ζ372937263711378ζ373437193718373ζ3736373137637ζ372837203717379ζ373537253712372ζ3722372137163715ζ373337243713374ζ372737233714371037333724371337437273723371437103732373037737537293726371137837343719371837337363731376373728372037173793735372537123723722372137163715    orthogonal faithful
ρ2344000000ζ372937263711378ζ373537253712372ζ3727372337143710ζ372837203717379ζ37323730377375ζ373437193718373ζ373337243713374ζ3736373137637ζ3722372137163715ζ3736373137637ζ3722372137163715ζ372937263711378ζ373537253712372ζ3727372337143710ζ372837203717379ζ37323730377375ζ373437193718373ζ373337243713374    orthogonal lifted from C37⋊C4
ρ244-4000000ζ372837203717379ζ37323730377375ζ373537253712372ζ373337243713374ζ3736373137637ζ372937263711378ζ3727372337143710ζ3722372137163715ζ37343719371837337223721371637153734371937183733728372037173793732373037737537353725371237237333724371337437363731376373729372637113783727372337143710    orthogonal faithful
ρ254-4000000ζ373437193718373ζ3727372337143710ζ373337243713374ζ372937263711378ζ373537253712372ζ3722372137163715ζ372837203717379ζ37323730377375ζ373637313763737323730377375373637313763737343719371837337273723371437103733372437133743729372637113783735372537123723722372137163715372837203717379    orthogonal faithful
ρ2644000000ζ3722372137163715ζ373337243713374ζ372837203717379ζ373437193718373ζ3727372337143710ζ3736373137637ζ372937263711378ζ373537253712372ζ37323730377375ζ373537253712372ζ37323730377375ζ3722372137163715ζ373337243713374ζ372837203717379ζ373437193718373ζ3727372337143710ζ3736373137637ζ372937263711378    orthogonal lifted from C37⋊C4

Smallest permutation representation of C2×C37⋊C4
On 74 points
Generators in S74
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)
(2 32 37 7)(3 26 36 13)(4 20 35 19)(5 14 34 25)(6 8 33 31)(9 27 30 12)(10 21 29 18)(11 15 28 24)(16 22 23 17)(39 69 74 44)(40 63 73 50)(41 57 72 56)(42 51 71 62)(43 45 70 68)(46 64 67 49)(47 58 66 55)(48 52 65 61)(53 59 60 54)

G:=sub<Sym(74)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54)>;

G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54) );

G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)], [(2,32,37,7),(3,26,36,13),(4,20,35,19),(5,14,34,25),(6,8,33,31),(9,27,30,12),(10,21,29,18),(11,15,28,24),(16,22,23,17),(39,69,74,44),(40,63,73,50),(41,57,72,56),(42,51,71,62),(43,45,70,68),(46,64,67,49),(47,58,66,55),(48,52,65,61),(53,59,60,54)]])

Matrix representation of C2×C37⋊C4 in GL4(𝔽149) generated by

148000
014800
001480
000148
,
1343134148
1000
0100
0010
,
1000
70221496
737113656
647087139
G:=sub<GL(4,GF(149))| [148,0,0,0,0,148,0,0,0,0,148,0,0,0,0,148],[134,1,0,0,3,0,1,0,134,0,0,1,148,0,0,0],[1,70,73,64,0,22,71,70,0,14,136,87,0,96,56,139] >;

C2×C37⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{37}\rtimes C_4
% in TeX

G:=Group("C2xC37:C4");
// GroupNames label

G:=SmallGroup(296,12);
// by ID

G=gap.SmallGroup(296,12);
# by ID

G:=PCGroup([4,-2,-2,-2,-37,16,3971,1163]);
// Polycyclic

G:=Group<a,b,c|a^2=b^37=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations

Export

Subgroup lattice of C2×C37⋊C4 in TeX
Character table of C2×C37⋊C4 in TeX

׿
×
𝔽