direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C37⋊C4, C74⋊C4, D37⋊C4, D74.C2, D37.C22, C37⋊(C2×C4), SmallGroup(296,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C37 — D37 — C37⋊C4 — C2×C37⋊C4 |
C37 — C2×C37⋊C4 |
Generators and relations for C2×C37⋊C4
G = < a,b,c | a2=b37=c4=1, ab=ba, ac=ca, cbc-1=b6 >
Character table of C2×C37⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 37A | 37B | 37C | 37D | 37E | 37F | 37G | 37H | 37I | 74A | 74B | 74C | 74D | 74E | 74F | 74G | 74H | 74I | |
size | 1 | 1 | 37 | 37 | 37 | 37 | 37 | 37 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3732+ζ3730+ζ377+ζ375 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3729-ζ3726-ζ3711-ζ378 | orthogonal faithful |
ρ10 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3722+ζ3721+ζ3716+ζ3715 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3733-ζ3724-ζ3713-ζ374 | orthogonal faithful |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3735+ζ3725+ζ3712+ζ372 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3734-ζ3719-ζ3718-ζ373 | orthogonal faithful |
ρ12 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | orthogonal lifted from C37⋊C4 |
ρ13 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3736+ζ3731+ζ376+ζ37 | ζ3732+ζ3730+ζ377+ζ375 | ζ3736+ζ3731+ζ376+ζ37 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | orthogonal lifted from C37⋊C4 |
ρ14 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3732+ζ3730+ζ377+ζ375 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3729+ζ3726+ζ3711+ζ378 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3735-ζ3725-ζ3712-ζ372 | orthogonal faithful |
ρ15 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | orthogonal lifted from C37⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | orthogonal lifted from C37⋊C4 |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3733+ζ3724+ζ3713+ζ374 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3736-ζ3731-ζ376-ζ37 | orthogonal faithful |
ρ18 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | orthogonal lifted from C37⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3732+ζ3730+ζ377+ζ375 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3732+ζ3730+ζ377+ζ375 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | orthogonal lifted from C37⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3736+ζ3731+ζ376+ζ37 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3728+ζ3720+ζ3717+ζ379 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3732-ζ3730-ζ377-ζ375 | orthogonal faithful |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3736+ζ3731+ζ376+ζ37 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3736+ζ3731+ζ376+ζ37 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3732+ζ3730+ζ377+ζ375 | orthogonal lifted from C37⋊C4 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3732+ζ3730+ζ377+ζ375 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3736+ζ3731+ζ376+ζ37 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3727+ζ3723+ζ3714+ζ3710 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3722-ζ3721-ζ3716-ζ3715 | orthogonal faithful |
ρ23 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3736+ζ3731+ζ376+ζ37 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3733+ζ3724+ζ3713+ζ374 | orthogonal lifted from C37⋊C4 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3734+ζ3719+ζ3718+ζ373 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3728-ζ3720-ζ3717-ζ379 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3727-ζ3723-ζ3714-ζ3710 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3732+ζ3730+ζ377+ζ375 | ζ3736+ζ3731+ζ376+ζ37 | -ζ3732-ζ3730-ζ377-ζ375 | -ζ3736-ζ3731-ζ376-ζ37 | -ζ3734-ζ3719-ζ3718-ζ373 | -ζ3727-ζ3723-ζ3714-ζ3710 | -ζ3733-ζ3724-ζ3713-ζ374 | -ζ3729-ζ3726-ζ3711-ζ378 | -ζ3735-ζ3725-ζ3712-ζ372 | -ζ3722-ζ3721-ζ3716-ζ3715 | -ζ3728-ζ3720-ζ3717-ζ379 | orthogonal faithful |
ρ26 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3732+ζ3730+ζ377+ζ375 | ζ3735+ζ3725+ζ3712+ζ372 | ζ3732+ζ3730+ζ377+ζ375 | ζ3722+ζ3721+ζ3716+ζ3715 | ζ3733+ζ3724+ζ3713+ζ374 | ζ3728+ζ3720+ζ3717+ζ379 | ζ3734+ζ3719+ζ3718+ζ373 | ζ3727+ζ3723+ζ3714+ζ3710 | ζ3736+ζ3731+ζ376+ζ37 | ζ3729+ζ3726+ζ3711+ζ378 | orthogonal lifted from C37⋊C4 |
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)
(2 32 37 7)(3 26 36 13)(4 20 35 19)(5 14 34 25)(6 8 33 31)(9 27 30 12)(10 21 29 18)(11 15 28 24)(16 22 23 17)(39 69 74 44)(40 63 73 50)(41 57 72 56)(42 51 71 62)(43 45 70 68)(46 64 67 49)(47 58 66 55)(48 52 65 61)(53 59 60 54)
G:=sub<Sym(74)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54)>;
G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54) );
G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)], [(2,32,37,7),(3,26,36,13),(4,20,35,19),(5,14,34,25),(6,8,33,31),(9,27,30,12),(10,21,29,18),(11,15,28,24),(16,22,23,17),(39,69,74,44),(40,63,73,50),(41,57,72,56),(42,51,71,62),(43,45,70,68),(46,64,67,49),(47,58,66,55),(48,52,65,61),(53,59,60,54)]])
Matrix representation of C2×C37⋊C4 ►in GL4(𝔽149) generated by
148 | 0 | 0 | 0 |
0 | 148 | 0 | 0 |
0 | 0 | 148 | 0 |
0 | 0 | 0 | 148 |
134 | 3 | 134 | 148 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
70 | 22 | 14 | 96 |
73 | 71 | 136 | 56 |
64 | 70 | 87 | 139 |
G:=sub<GL(4,GF(149))| [148,0,0,0,0,148,0,0,0,0,148,0,0,0,0,148],[134,1,0,0,3,0,1,0,134,0,0,1,148,0,0,0],[1,70,73,64,0,22,71,70,0,14,136,87,0,96,56,139] >;
C2×C37⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_{37}\rtimes C_4
% in TeX
G:=Group("C2xC37:C4");
// GroupNames label
G:=SmallGroup(296,12);
// by ID
G=gap.SmallGroup(296,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-37,16,3971,1163]);
// Polycyclic
G:=Group<a,b,c|a^2=b^37=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations
Export
Subgroup lattice of C2×C37⋊C4 in TeX
Character table of C2×C37⋊C4 in TeX