direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×C5⋊F5, C15⋊3F5, C52⋊5C12, (C5×C15)⋊7C4, C5⋊1(C3×F5), C5⋊D5.2C6, (C3×C5⋊D5).3C2, SmallGroup(300,30)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — C5⋊D5 — C3×C5⋊D5 — C3×C5⋊F5 |
C52 — C3×C5⋊F5 |
Generators and relations for C3×C5⋊F5
G = < a,b,c,d | a3=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b3, dcd-1=c3 >
Character table of C3×C5⋊F5
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 6A | 6B | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 15I | 15J | 15K | 15L | |
size | 1 | 25 | 1 | 1 | 25 | 25 | 4 | 4 | 4 | 4 | 4 | 4 | 25 | 25 | 25 | 25 | 25 | 25 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | ζ3 | ζ32 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 12 |
ρ10 | 1 | -1 | ζ32 | ζ3 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 12 |
ρ11 | 1 | -1 | ζ3 | ζ32 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 12 |
ρ12 | 1 | -1 | ζ32 | ζ3 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 12 |
ρ13 | 4 | 0 | 4 | 4 | 0 | 0 | 4 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ14 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | -1 | -1 | 4 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ15 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ16 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | -1 | -1 | -1 | 4 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 4 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ17 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | -1 | 4 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | -1 | 4 | orthogonal lifted from F5 |
ρ18 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 4 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 4 | -1 | 4 | -1 | orthogonal lifted from F5 |
ρ19 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | -1 | -1 | 4 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | -2+2√-3 | ζ65 | ζ65 | ζ6 | -2-2√-3 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×F5 |
ρ20 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | -1 | -1 | -1 | 4 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | -2+2√-3 | ζ65 | ζ6 | ζ6 | -2-2√-3 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×F5 |
ρ21 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 4 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | -2+2√-3 | ζ65 | -2-2√-3 | ζ6 | complex lifted from C3×F5 |
ρ22 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | -1 | 4 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | ζ65 | -2+2√-3 | ζ6 | -2-2√-3 | complex lifted from C3×F5 |
ρ23 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | -1 | 4 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | ζ6 | -2-2√-3 | ζ65 | -2+2√-3 | complex lifted from C3×F5 |
ρ24 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | -1 | -1 | 4 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | -2-2√-3 | ζ6 | ζ6 | ζ65 | -2+2√-3 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×F5 |
ρ25 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ65 | -2+2√-3 | ζ6 | ζ6 | ζ6 | -2-2√-3 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×F5 |
ρ26 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 4 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2-2√-3 | ζ6 | ζ6 | ζ6 | -2+2√-3 | ζ65 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×F5 |
ρ27 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 4 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | -2-2√-3 | ζ6 | -2+2√-3 | ζ65 | complex lifted from C3×F5 |
ρ28 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | ζ6 | -2-2√-3 | ζ65 | ζ65 | ζ65 | -2+2√-3 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×F5 |
ρ29 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 4 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -2+2√-3 | ζ65 | ζ65 | ζ65 | -2-2√-3 | ζ6 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | complex lifted from C3×F5 |
ρ30 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | -1 | -1 | -1 | 4 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ6 | -2-2√-3 | ζ6 | ζ65 | ζ65 | -2+2√-3 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | complex lifted from C3×F5 |
(1 12 56)(2 13 57)(3 14 58)(4 15 59)(5 11 60)(6 55 34)(7 51 35)(8 52 31)(9 53 32)(10 54 33)(16 65 40)(17 61 36)(18 62 37)(19 63 38)(20 64 39)(21 70 45)(22 66 41)(23 67 42)(24 68 43)(25 69 44)(26 75 50)(27 71 46)(28 72 47)(29 73 48)(30 74 49)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)
(1 42 32 39 26)(2 43 33 40 27)(3 44 34 36 28)(4 45 35 37 29)(5 41 31 38 30)(6 17 72 14 25)(7 18 73 15 21)(8 19 74 11 22)(9 20 75 12 23)(10 16 71 13 24)(46 57 68 54 65)(47 58 69 55 61)(48 59 70 51 62)(49 60 66 52 63)(50 56 67 53 64)
(2 3 5 4)(6 74 18 24)(7 71 17 22)(8 73 16 25)(9 75 20 23)(10 72 19 21)(11 15 13 14)(26 39 42 32)(27 36 41 35)(28 38 45 33)(29 40 44 31)(30 37 43 34)(46 61 66 51)(47 63 70 54)(48 65 69 52)(49 62 68 55)(50 64 67 53)(57 58 60 59)
G:=sub<Sym(75)| (1,12,56)(2,13,57)(3,14,58)(4,15,59)(5,11,60)(6,55,34)(7,51,35)(8,52,31)(9,53,32)(10,54,33)(16,65,40)(17,61,36)(18,62,37)(19,63,38)(20,64,39)(21,70,45)(22,66,41)(23,67,42)(24,68,43)(25,69,44)(26,75,50)(27,71,46)(28,72,47)(29,73,48)(30,74,49), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75), (1,42,32,39,26)(2,43,33,40,27)(3,44,34,36,28)(4,45,35,37,29)(5,41,31,38,30)(6,17,72,14,25)(7,18,73,15,21)(8,19,74,11,22)(9,20,75,12,23)(10,16,71,13,24)(46,57,68,54,65)(47,58,69,55,61)(48,59,70,51,62)(49,60,66,52,63)(50,56,67,53,64), (2,3,5,4)(6,74,18,24)(7,71,17,22)(8,73,16,25)(9,75,20,23)(10,72,19,21)(11,15,13,14)(26,39,42,32)(27,36,41,35)(28,38,45,33)(29,40,44,31)(30,37,43,34)(46,61,66,51)(47,63,70,54)(48,65,69,52)(49,62,68,55)(50,64,67,53)(57,58,60,59)>;
G:=Group( (1,12,56)(2,13,57)(3,14,58)(4,15,59)(5,11,60)(6,55,34)(7,51,35)(8,52,31)(9,53,32)(10,54,33)(16,65,40)(17,61,36)(18,62,37)(19,63,38)(20,64,39)(21,70,45)(22,66,41)(23,67,42)(24,68,43)(25,69,44)(26,75,50)(27,71,46)(28,72,47)(29,73,48)(30,74,49), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75), (1,42,32,39,26)(2,43,33,40,27)(3,44,34,36,28)(4,45,35,37,29)(5,41,31,38,30)(6,17,72,14,25)(7,18,73,15,21)(8,19,74,11,22)(9,20,75,12,23)(10,16,71,13,24)(46,57,68,54,65)(47,58,69,55,61)(48,59,70,51,62)(49,60,66,52,63)(50,56,67,53,64), (2,3,5,4)(6,74,18,24)(7,71,17,22)(8,73,16,25)(9,75,20,23)(10,72,19,21)(11,15,13,14)(26,39,42,32)(27,36,41,35)(28,38,45,33)(29,40,44,31)(30,37,43,34)(46,61,66,51)(47,63,70,54)(48,65,69,52)(49,62,68,55)(50,64,67,53)(57,58,60,59) );
G=PermutationGroup([[(1,12,56),(2,13,57),(3,14,58),(4,15,59),(5,11,60),(6,55,34),(7,51,35),(8,52,31),(9,53,32),(10,54,33),(16,65,40),(17,61,36),(18,62,37),(19,63,38),(20,64,39),(21,70,45),(22,66,41),(23,67,42),(24,68,43),(25,69,44),(26,75,50),(27,71,46),(28,72,47),(29,73,48),(30,74,49)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75)], [(1,42,32,39,26),(2,43,33,40,27),(3,44,34,36,28),(4,45,35,37,29),(5,41,31,38,30),(6,17,72,14,25),(7,18,73,15,21),(8,19,74,11,22),(9,20,75,12,23),(10,16,71,13,24),(46,57,68,54,65),(47,58,69,55,61),(48,59,70,51,62),(49,60,66,52,63),(50,56,67,53,64)], [(2,3,5,4),(6,74,18,24),(7,71,17,22),(8,73,16,25),(9,75,20,23),(10,72,19,21),(11,15,13,14),(26,39,42,32),(27,36,41,35),(28,38,45,33),(29,40,44,31),(30,37,43,34),(46,61,66,51),(47,63,70,54),(48,65,69,52),(49,62,68,55),(50,64,67,53),(57,58,60,59)]])
Matrix representation of C3×C5⋊F5 ►in GL8(𝔽61)
47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 47 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 47 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 47 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 47 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 47 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 60 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 60 | 0 | 1 | 60 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 60 |
G:=sub<GL(8,GF(61))| [47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,60,60,60,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,60,60,60,60],[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,60,60,60] >;
C3×C5⋊F5 in GAP, Magma, Sage, TeX
C_3\times C_5\rtimes F_5
% in TeX
G:=Group("C3xC5:F5");
// GroupNames label
G:=SmallGroup(300,30);
// by ID
G=gap.SmallGroup(300,30);
# by ID
G:=PCGroup([5,-2,-3,-2,-5,-5,30,483,173,3004,1014]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C3×C5⋊F5 in TeX
Character table of C3×C5⋊F5 in TeX