Copied to
clipboard

G = C3×D5.D5order 300 = 22·3·52

Direct product of C3 and D5.D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×D5.D5, C156F5, C524C12, C152Dic5, (C5×C15)⋊6C4, D5.(C3×D5), C5⋊(C3×Dic5), C53(C3×F5), (C3×D5).2D5, (C5×D5).2C6, (D5×C15).3C2, SmallGroup(300,29)

Series: Derived Chief Lower central Upper central

C1C52 — C3×D5.D5
C1C5C52C5×D5D5×C15 — C3×D5.D5
C52 — C3×D5.D5
C1C3

Generators and relations for C3×D5.D5
 G = < a,b,c,d,e | a3=b5=c2=d5=1, e2=b-1c, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b2, cd=dc, ece-1=bc, ede-1=d-1 >

5C2
4C5
25C4
5C6
5C10
4C15
25C12
5F5
5Dic5
5C30
5C3×F5
5C3×Dic5

Smallest permutation representation of C3×D5.D5
On 60 points
Generators in S60
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 18)(12 17)(13 16)(14 20)(15 19)(21 28)(22 27)(23 26)(24 30)(25 29)(31 38)(32 37)(33 36)(34 40)(35 39)(41 48)(42 47)(43 46)(44 50)(45 49)(51 58)(52 57)(53 56)(54 60)(55 59)
(1 5 4 3 2)(6 7 8 9 10)(11 15 14 13 12)(16 17 18 19 20)(21 25 24 23 22)(26 27 28 29 30)(31 33 35 32 34)(36 39 37 40 38)(41 43 45 42 44)(46 49 47 50 48)(51 53 55 52 54)(56 59 57 60 58)
(1 39 6 31)(2 37 10 33)(3 40 9 35)(4 38 8 32)(5 36 7 34)(11 50 19 45)(12 48 18 42)(13 46 17 44)(14 49 16 41)(15 47 20 43)(21 60 29 55)(22 58 28 52)(23 56 27 54)(24 59 26 51)(25 57 30 53)

G:=sub<Sym(60)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39)(41,48)(42,47)(43,46)(44,50)(45,49)(51,58)(52,57)(53,56)(54,60)(55,59), (1,5,4,3,2)(6,7,8,9,10)(11,15,14,13,12)(16,17,18,19,20)(21,25,24,23,22)(26,27,28,29,30)(31,33,35,32,34)(36,39,37,40,38)(41,43,45,42,44)(46,49,47,50,48)(51,53,55,52,54)(56,59,57,60,58), (1,39,6,31)(2,37,10,33)(3,40,9,35)(4,38,8,32)(5,36,7,34)(11,50,19,45)(12,48,18,42)(13,46,17,44)(14,49,16,41)(15,47,20,43)(21,60,29,55)(22,58,28,52)(23,56,27,54)(24,59,26,51)(25,57,30,53)>;

G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39)(41,48)(42,47)(43,46)(44,50)(45,49)(51,58)(52,57)(53,56)(54,60)(55,59), (1,5,4,3,2)(6,7,8,9,10)(11,15,14,13,12)(16,17,18,19,20)(21,25,24,23,22)(26,27,28,29,30)(31,33,35,32,34)(36,39,37,40,38)(41,43,45,42,44)(46,49,47,50,48)(51,53,55,52,54)(56,59,57,60,58), (1,39,6,31)(2,37,10,33)(3,40,9,35)(4,38,8,32)(5,36,7,34)(11,50,19,45)(12,48,18,42)(13,46,17,44)(14,49,16,41)(15,47,20,43)(21,60,29,55)(22,58,28,52)(23,56,27,54)(24,59,26,51)(25,57,30,53) );

G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,18),(12,17),(13,16),(14,20),(15,19),(21,28),(22,27),(23,26),(24,30),(25,29),(31,38),(32,37),(33,36),(34,40),(35,39),(41,48),(42,47),(43,46),(44,50),(45,49),(51,58),(52,57),(53,56),(54,60),(55,59)], [(1,5,4,3,2),(6,7,8,9,10),(11,15,14,13,12),(16,17,18,19,20),(21,25,24,23,22),(26,27,28,29,30),(31,33,35,32,34),(36,39,37,40,38),(41,43,45,42,44),(46,49,47,50,48),(51,53,55,52,54),(56,59,57,60,58)], [(1,39,6,31),(2,37,10,33),(3,40,9,35),(4,38,8,32),(5,36,7,34),(11,50,19,45),(12,48,18,42),(13,46,17,44),(14,49,16,41),(15,47,20,43),(21,60,29,55),(22,58,28,52),(23,56,27,54),(24,59,26,51),(25,57,30,53)]])

39 conjugacy classes

class 1  2 3A3B4A4B5A5B5C···5G6A6B10A10B12A12B12C12D15A15B15C15D15E···15N30A30B30C30D
order123344555···5661010121212121515151515···1530303030
size15112525224···45510102525252522224···410101010

39 irreducible representations

dim11111122224444
type+++-+
imageC1C2C3C4C6C12D5Dic5C3×D5C3×Dic5F5C3×F5D5.D5C3×D5.D5
kernelC3×D5.D5D5×C15D5.D5C5×C15C5×D5C52C3×D5C15D5C5C15C5C3C1
# reps11222422441248

Matrix representation of C3×D5.D5 in GL6(𝔽61)

4700000
0470000
001000
000100
000010
000001
,
100000
010000
009000
0003400
0000580
0000020
,
100000
010000
0003400
009000
0000020
0000580
,
43600000
100000
0034000
0003400
000090
000009
,
1810000
43430000
000090
000009
0003400
0034000

G:=sub<GL(6,GF(61))| [47,0,0,0,0,0,0,47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,34,0,0,0,0,0,0,58,0,0,0,0,0,0,20],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,34,0,0,0,0,0,0,0,0,58,0,0,0,0,20,0],[43,1,0,0,0,0,60,0,0,0,0,0,0,0,34,0,0,0,0,0,0,34,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[18,43,0,0,0,0,1,43,0,0,0,0,0,0,0,0,0,34,0,0,0,0,34,0,0,0,9,0,0,0,0,0,0,9,0,0] >;

C3×D5.D5 in GAP, Magma, Sage, TeX

C_3\times D_5.D_5
% in TeX

G:=Group("C3xD5.D5");
// GroupNames label

G:=SmallGroup(300,29);
// by ID

G=gap.SmallGroup(300,29);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-5,30,963,4504,1014]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^5=1,e^2=b^-1*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^2,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×D5.D5 in TeX

׿
×
𝔽