direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×D5.D5, C15⋊6F5, C52⋊4C12, C15⋊2Dic5, (C5×C15)⋊6C4, D5.(C3×D5), C5⋊(C3×Dic5), C5⋊3(C3×F5), (C3×D5).2D5, (C5×D5).2C6, (D5×C15).3C2, SmallGroup(300,29)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C3×D5.D5 |
Generators and relations for C3×D5.D5
G = < a,b,c,d,e | a3=b5=c2=d5=1, e2=b-1c, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b2, cd=dc, ece-1=bc, ede-1=d-1 >
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 18)(12 17)(13 16)(14 20)(15 19)(21 28)(22 27)(23 26)(24 30)(25 29)(31 38)(32 37)(33 36)(34 40)(35 39)(41 48)(42 47)(43 46)(44 50)(45 49)(51 58)(52 57)(53 56)(54 60)(55 59)
(1 5 4 3 2)(6 7 8 9 10)(11 15 14 13 12)(16 17 18 19 20)(21 25 24 23 22)(26 27 28 29 30)(31 33 35 32 34)(36 39 37 40 38)(41 43 45 42 44)(46 49 47 50 48)(51 53 55 52 54)(56 59 57 60 58)
(1 39 6 31)(2 37 10 33)(3 40 9 35)(4 38 8 32)(5 36 7 34)(11 50 19 45)(12 48 18 42)(13 46 17 44)(14 49 16 41)(15 47 20 43)(21 60 29 55)(22 58 28 52)(23 56 27 54)(24 59 26 51)(25 57 30 53)
G:=sub<Sym(60)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39)(41,48)(42,47)(43,46)(44,50)(45,49)(51,58)(52,57)(53,56)(54,60)(55,59), (1,5,4,3,2)(6,7,8,9,10)(11,15,14,13,12)(16,17,18,19,20)(21,25,24,23,22)(26,27,28,29,30)(31,33,35,32,34)(36,39,37,40,38)(41,43,45,42,44)(46,49,47,50,48)(51,53,55,52,54)(56,59,57,60,58), (1,39,6,31)(2,37,10,33)(3,40,9,35)(4,38,8,32)(5,36,7,34)(11,50,19,45)(12,48,18,42)(13,46,17,44)(14,49,16,41)(15,47,20,43)(21,60,29,55)(22,58,28,52)(23,56,27,54)(24,59,26,51)(25,57,30,53)>;
G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,18)(12,17)(13,16)(14,20)(15,19)(21,28)(22,27)(23,26)(24,30)(25,29)(31,38)(32,37)(33,36)(34,40)(35,39)(41,48)(42,47)(43,46)(44,50)(45,49)(51,58)(52,57)(53,56)(54,60)(55,59), (1,5,4,3,2)(6,7,8,9,10)(11,15,14,13,12)(16,17,18,19,20)(21,25,24,23,22)(26,27,28,29,30)(31,33,35,32,34)(36,39,37,40,38)(41,43,45,42,44)(46,49,47,50,48)(51,53,55,52,54)(56,59,57,60,58), (1,39,6,31)(2,37,10,33)(3,40,9,35)(4,38,8,32)(5,36,7,34)(11,50,19,45)(12,48,18,42)(13,46,17,44)(14,49,16,41)(15,47,20,43)(21,60,29,55)(22,58,28,52)(23,56,27,54)(24,59,26,51)(25,57,30,53) );
G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,18),(12,17),(13,16),(14,20),(15,19),(21,28),(22,27),(23,26),(24,30),(25,29),(31,38),(32,37),(33,36),(34,40),(35,39),(41,48),(42,47),(43,46),(44,50),(45,49),(51,58),(52,57),(53,56),(54,60),(55,59)], [(1,5,4,3,2),(6,7,8,9,10),(11,15,14,13,12),(16,17,18,19,20),(21,25,24,23,22),(26,27,28,29,30),(31,33,35,32,34),(36,39,37,40,38),(41,43,45,42,44),(46,49,47,50,48),(51,53,55,52,54),(56,59,57,60,58)], [(1,39,6,31),(2,37,10,33),(3,40,9,35),(4,38,8,32),(5,36,7,34),(11,50,19,45),(12,48,18,42),(13,46,17,44),(14,49,16,41),(15,47,20,43),(21,60,29,55),(22,58,28,52),(23,56,27,54),(24,59,26,51),(25,57,30,53)]])
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 5C | ··· | 5G | 6A | 6B | 10A | 10B | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 15E | ··· | 15N | 30A | 30B | 30C | 30D |
order | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | ··· | 5 | 6 | 6 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 30 | 30 | 30 | 30 |
size | 1 | 5 | 1 | 1 | 25 | 25 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 10 | 10 | 25 | 25 | 25 | 25 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | - | + | |||||||||
image | C1 | C2 | C3 | C4 | C6 | C12 | D5 | Dic5 | C3×D5 | C3×Dic5 | F5 | C3×F5 | D5.D5 | C3×D5.D5 |
kernel | C3×D5.D5 | D5×C15 | D5.D5 | C5×C15 | C5×D5 | C52 | C3×D5 | C15 | D5 | C5 | C15 | C5 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 1 | 2 | 4 | 8 |
Matrix representation of C3×D5.D5 ►in GL6(𝔽61)
47 | 0 | 0 | 0 | 0 | 0 |
0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 58 | 0 |
0 | 0 | 0 | 0 | 0 | 20 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 34 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 20 |
0 | 0 | 0 | 0 | 58 | 0 |
43 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 0 | 0 | 0 |
0 | 0 | 0 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
18 | 1 | 0 | 0 | 0 | 0 |
43 | 43 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 0 | 0 | 34 | 0 | 0 |
0 | 0 | 34 | 0 | 0 | 0 |
G:=sub<GL(6,GF(61))| [47,0,0,0,0,0,0,47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,34,0,0,0,0,0,0,58,0,0,0,0,0,0,20],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,34,0,0,0,0,0,0,0,0,58,0,0,0,0,20,0],[43,1,0,0,0,0,60,0,0,0,0,0,0,0,34,0,0,0,0,0,0,34,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[18,43,0,0,0,0,1,43,0,0,0,0,0,0,0,0,0,34,0,0,0,0,34,0,0,0,9,0,0,0,0,0,0,9,0,0] >;
C3×D5.D5 in GAP, Magma, Sage, TeX
C_3\times D_5.D_5
% in TeX
G:=Group("C3xD5.D5");
// GroupNames label
G:=SmallGroup(300,29);
// by ID
G=gap.SmallGroup(300,29);
# by ID
G:=PCGroup([5,-2,-3,-2,-5,-5,30,963,4504,1014]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^5=1,e^2=b^-1*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^2,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations
Export