metabelian, supersoluble, monomial, A-group
Aliases: C7⋊4F7, C72⋊5C6, (C7×D7)⋊4C3, D7⋊2(C7⋊C3), C72⋊C3⋊1C2, C7⋊2(C2×C7⋊C3), SmallGroup(294,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C72 — C72⋊C3 — C7⋊4F7 |
C72 — C7⋊4F7 |
Generators and relations for C7⋊4F7
G = < a,b,c | a7=b7=c6=1, ab=ba, cac-1=a2, cbc-1=b5 >
Character table of C7⋊4F7
class | 1 | 2 | 3A | 3B | 6A | 6B | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 14A | 14B | |
size | 1 | 7 | 49 | 49 | 49 | 49 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 21 | 21 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ7 | 3 | 3 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ8 | 3 | 3 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ9 | 3 | -3 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | 3 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ10 | 3 | -3 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | 3 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ11 | 6 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from F7 |
ρ12 | 6 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | -1+√-7 | -1 | -1 | 5-√-7/2 | -1 | 5+√-7/2 | -1-√-7 | 0 | 0 | complex faithful |
ρ13 | 6 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 5+√-7/2 | -1-√-7 | -1 | -1 | -1+√-7 | -1 | 5-√-7/2 | 0 | 0 | complex faithful |
ρ14 | 6 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | -1-√-7 | -1 | -1 | 5+√-7/2 | -1 | 5-√-7/2 | -1+√-7 | 0 | 0 | complex faithful |
ρ15 | 6 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | -1 | 5+√-7/2 | -1 | -1-√-7 | 5-√-7/2 | -1+√-7 | -1 | 0 | 0 | complex faithful |
ρ16 | 6 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | -1 | 5-√-7/2 | -1 | -1+√-7 | 5+√-7/2 | -1-√-7 | -1 | 0 | 0 | complex faithful |
ρ17 | 6 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 5-√-7/2 | -1+√-7 | -1 | -1 | -1-√-7 | -1 | 5+√-7/2 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 5 2 6 3 7 4)(8 11 14 10 13 9 12)
(1 11)(2 8 3 12 5 13)(4 9 7 14 6 10)
G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,5,2,6,3,7,4)(8,11,14,10,13,9,12), (1,11)(2,8,3,12,5,13)(4,9,7,14,6,10)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,5,2,6,3,7,4)(8,11,14,10,13,9,12), (1,11)(2,8,3,12,5,13)(4,9,7,14,6,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,5,2,6,3,7,4),(8,11,14,10,13,9,12)], [(1,11),(2,8,3,12,5,13),(4,9,7,14,6,10)]])
G:=TransitiveGroup(14,14);
Polynomial with Galois group C7⋊4F7 over ℚ
action | f(x) | Disc(f) |
---|---|---|
14T14 | x14-31958x7+656356768 | -244·328·721·2958 |
Matrix representation of C7⋊4F7 ►in GL6(𝔽2)
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(2))| [1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0,1],[1,0,1,1,0,1,0,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0],[1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,1] >;
C7⋊4F7 in GAP, Magma, Sage, TeX
C_7\rtimes_4F_7
% in TeX
G:=Group("C7:4F7");
// GroupNames label
G:=SmallGroup(294,12);
// by ID
G=gap.SmallGroup(294,12);
# by ID
G:=PCGroup([4,-2,-3,-7,-7,150,4035,1351]);
// Polycyclic
G:=Group<a,b,c|a^7=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^2,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C7⋊4F7 in TeX
Character table of C7⋊4F7 in TeX