metabelian, supersoluble, monomial, A-group
Aliases: C7⋊D21, C21⋊1D7, C72⋊3S3, C3⋊(C7⋊D7), (C7×C21)⋊1C2, SmallGroup(294,22)
Series: Derived ►Chief ►Lower central ►Upper central
| C7×C21 — C7⋊D21 |
Generators and relations for C7⋊D21
G = < a,b,c | a7=b21=c2=1, ab=ba, cac=a-1, cbc=b-1 >
(1 76 63 110 87 140 27)(2 77 43 111 88 141 28)(3 78 44 112 89 142 29)(4 79 45 113 90 143 30)(5 80 46 114 91 144 31)(6 81 47 115 92 145 32)(7 82 48 116 93 146 33)(8 83 49 117 94 147 34)(9 84 50 118 95 127 35)(10 64 51 119 96 128 36)(11 65 52 120 97 129 37)(12 66 53 121 98 130 38)(13 67 54 122 99 131 39)(14 68 55 123 100 132 40)(15 69 56 124 101 133 41)(16 70 57 125 102 134 42)(17 71 58 126 103 135 22)(18 72 59 106 104 136 23)(19 73 60 107 105 137 24)(20 74 61 108 85 138 25)(21 75 62 109 86 139 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 80)(23 79)(24 78)(25 77)(26 76)(27 75)(28 74)(29 73)(30 72)(31 71)(32 70)(33 69)(34 68)(35 67)(36 66)(37 65)(38 64)(39 84)(40 83)(41 82)(42 81)(43 138)(44 137)(45 136)(46 135)(47 134)(48 133)(49 132)(50 131)(51 130)(52 129)(53 128)(54 127)(55 147)(56 146)(57 145)(58 144)(59 143)(60 142)(61 141)(62 140)(63 139)(85 111)(86 110)(87 109)(88 108)(89 107)(90 106)(91 126)(92 125)(93 124)(94 123)(95 122)(96 121)(97 120)(98 119)(99 118)(100 117)(101 116)(102 115)(103 114)(104 113)(105 112)
G:=sub<Sym(147)| (1,76,63,110,87,140,27)(2,77,43,111,88,141,28)(3,78,44,112,89,142,29)(4,79,45,113,90,143,30)(5,80,46,114,91,144,31)(6,81,47,115,92,145,32)(7,82,48,116,93,146,33)(8,83,49,117,94,147,34)(9,84,50,118,95,127,35)(10,64,51,119,96,128,36)(11,65,52,120,97,129,37)(12,66,53,121,98,130,38)(13,67,54,122,99,131,39)(14,68,55,123,100,132,40)(15,69,56,124,101,133,41)(16,70,57,125,102,134,42)(17,71,58,126,103,135,22)(18,72,59,106,104,136,23)(19,73,60,107,105,137,24)(20,74,61,108,85,138,25)(21,75,62,109,86,139,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,84)(40,83)(41,82)(42,81)(43,138)(44,137)(45,136)(46,135)(47,134)(48,133)(49,132)(50,131)(51,130)(52,129)(53,128)(54,127)(55,147)(56,146)(57,145)(58,144)(59,143)(60,142)(61,141)(62,140)(63,139)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112)>;
G:=Group( (1,76,63,110,87,140,27)(2,77,43,111,88,141,28)(3,78,44,112,89,142,29)(4,79,45,113,90,143,30)(5,80,46,114,91,144,31)(6,81,47,115,92,145,32)(7,82,48,116,93,146,33)(8,83,49,117,94,147,34)(9,84,50,118,95,127,35)(10,64,51,119,96,128,36)(11,65,52,120,97,129,37)(12,66,53,121,98,130,38)(13,67,54,122,99,131,39)(14,68,55,123,100,132,40)(15,69,56,124,101,133,41)(16,70,57,125,102,134,42)(17,71,58,126,103,135,22)(18,72,59,106,104,136,23)(19,73,60,107,105,137,24)(20,74,61,108,85,138,25)(21,75,62,109,86,139,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,84)(40,83)(41,82)(42,81)(43,138)(44,137)(45,136)(46,135)(47,134)(48,133)(49,132)(50,131)(51,130)(52,129)(53,128)(54,127)(55,147)(56,146)(57,145)(58,144)(59,143)(60,142)(61,141)(62,140)(63,139)(85,111)(86,110)(87,109)(88,108)(89,107)(90,106)(91,126)(92,125)(93,124)(94,123)(95,122)(96,121)(97,120)(98,119)(99,118)(100,117)(101,116)(102,115)(103,114)(104,113)(105,112) );
G=PermutationGroup([[(1,76,63,110,87,140,27),(2,77,43,111,88,141,28),(3,78,44,112,89,142,29),(4,79,45,113,90,143,30),(5,80,46,114,91,144,31),(6,81,47,115,92,145,32),(7,82,48,116,93,146,33),(8,83,49,117,94,147,34),(9,84,50,118,95,127,35),(10,64,51,119,96,128,36),(11,65,52,120,97,129,37),(12,66,53,121,98,130,38),(13,67,54,122,99,131,39),(14,68,55,123,100,132,40),(15,69,56,124,101,133,41),(16,70,57,125,102,134,42),(17,71,58,126,103,135,22),(18,72,59,106,104,136,23),(19,73,60,107,105,137,24),(20,74,61,108,85,138,25),(21,75,62,109,86,139,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,80),(23,79),(24,78),(25,77),(26,76),(27,75),(28,74),(29,73),(30,72),(31,71),(32,70),(33,69),(34,68),(35,67),(36,66),(37,65),(38,64),(39,84),(40,83),(41,82),(42,81),(43,138),(44,137),(45,136),(46,135),(47,134),(48,133),(49,132),(50,131),(51,130),(52,129),(53,128),(54,127),(55,147),(56,146),(57,145),(58,144),(59,143),(60,142),(61,141),(62,140),(63,139),(85,111),(86,110),(87,109),(88,108),(89,107),(90,106),(91,126),(92,125),(93,124),(94,123),(95,122),(96,121),(97,120),(98,119),(99,118),(100,117),(101,116),(102,115),(103,114),(104,113),(105,112)]])
75 conjugacy classes
| class | 1 | 2 | 3 | 7A | ··· | 7X | 21A | ··· | 21AV |
| order | 1 | 2 | 3 | 7 | ··· | 7 | 21 | ··· | 21 |
| size | 1 | 147 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
75 irreducible representations
| dim | 1 | 1 | 2 | 2 | 2 |
| type | + | + | + | + | + |
| image | C1 | C2 | S3 | D7 | D21 |
| kernel | C7⋊D21 | C7×C21 | C72 | C21 | C7 |
| # reps | 1 | 1 | 1 | 24 | 48 |
Matrix representation of C7⋊D21 ►in GL4(𝔽43) generated by
| 0 | 1 | 0 | 0 |
| 42 | 19 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 20 | 3 | 0 | 0 |
| 40 | 34 | 0 | 0 |
| 0 | 0 | 37 | 19 |
| 0 | 0 | 24 | 17 |
| 34 | 2 | 0 | 0 |
| 3 | 9 | 0 | 0 |
| 0 | 0 | 37 | 19 |
| 0 | 0 | 14 | 6 |
G:=sub<GL(4,GF(43))| [0,42,0,0,1,19,0,0,0,0,1,0,0,0,0,1],[20,40,0,0,3,34,0,0,0,0,37,24,0,0,19,17],[34,3,0,0,2,9,0,0,0,0,37,14,0,0,19,6] >;
C7⋊D21 in GAP, Magma, Sage, TeX
C_7\rtimes D_{21} % in TeX
G:=Group("C7:D21"); // GroupNames label
G:=SmallGroup(294,22);
// by ID
G=gap.SmallGroup(294,22);
# by ID
G:=PCGroup([4,-2,-3,-7,-7,33,434,4035]);
// Polycyclic
G:=Group<a,b,c|a^7=b^21=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export