metabelian, supersoluble, monomial, A-group
Aliases: C7⋊D7, C72⋊2C2, SmallGroup(98,4)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — C7⋊D7 |
Generators and relations for C7⋊D7
G = < a,b,c | a7=b7=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Character table of C7⋊D7
class | 1 | 2 | 7A | 7B | 7C | 7D | 7E | 7F | 7G | 7H | 7I | 7J | 7K | 7L | 7M | 7N | 7O | 7P | 7Q | 7R | 7S | 7T | 7U | 7V | 7W | 7X | |
size | 1 | 49 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ4 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ5 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ6 | 2 | 0 | 2 | 2 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | 2 | orthogonal lifted from D7 |
ρ7 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ8 | 2 | 0 | 2 | 2 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | 2 | orthogonal lifted from D7 |
ρ9 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ10 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ12 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ13 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ14 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ15 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ16 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ17 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ18 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ19 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ20 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ21 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ22 | 2 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ23 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ24 | 2 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 2 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ25 | 2 | 0 | 2 | 2 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | ζ74+ζ73 | 2 | orthogonal lifted from D7 |
ρ26 | 2 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | orthogonal lifted from D7 |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)
(1 31 9 17 25 46 41)(2 32 10 18 26 47 42)(3 33 11 19 27 48 36)(4 34 12 20 28 49 37)(5 35 13 21 22 43 38)(6 29 14 15 23 44 39)(7 30 8 16 24 45 40)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 42)(8 26)(9 25)(10 24)(11 23)(12 22)(13 28)(14 27)(15 19)(16 18)(20 21)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 49)
G:=sub<Sym(49)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49), (1,31,9,17,25,46,41)(2,32,10,18,26,47,42)(3,33,11,19,27,48,36)(4,34,12,20,28,49,37)(5,35,13,21,22,43,38)(6,29,14,15,23,44,39)(7,30,8,16,24,45,40), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,42)(8,26)(9,25)(10,24)(11,23)(12,22)(13,28)(14,27)(15,19)(16,18)(20,21)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,49)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49), (1,31,9,17,25,46,41)(2,32,10,18,26,47,42)(3,33,11,19,27,48,36)(4,34,12,20,28,49,37)(5,35,13,21,22,43,38)(6,29,14,15,23,44,39)(7,30,8,16,24,45,40), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,42)(8,26)(9,25)(10,24)(11,23)(12,22)(13,28)(14,27)(15,19)(16,18)(20,21)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49)], [(1,31,9,17,25,46,41),(2,32,10,18,26,47,42),(3,33,11,19,27,48,36),(4,34,12,20,28,49,37),(5,35,13,21,22,43,38),(6,29,14,15,23,44,39),(7,30,8,16,24,45,40)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,42),(8,26),(9,25),(10,24),(11,23),(12,22),(13,28),(14,27),(15,19),(16,18),(20,21),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,49)]])
C7⋊D7 is a maximal subgroup of
C72⋊C4 D72 C7⋊5F7 C7⋊F7 C72⋊C6 C7⋊D21 C7⋊D35
C7⋊D7 is a maximal quotient of C7⋊Dic7 C7⋊D21 C7⋊D35
Matrix representation of C7⋊D7 ►in GL4(𝔽29) generated by
22 | 1 | 0 | 0 |
16 | 10 | 0 | 0 |
0 | 0 | 22 | 19 |
0 | 0 | 10 | 10 |
22 | 1 | 0 | 0 |
16 | 10 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 28 | 7 |
10 | 28 | 0 | 0 |
12 | 19 | 0 | 0 |
0 | 0 | 10 | 7 |
0 | 0 | 19 | 19 |
G:=sub<GL(4,GF(29))| [22,16,0,0,1,10,0,0,0,0,22,10,0,0,19,10],[22,16,0,0,1,10,0,0,0,0,0,28,0,0,1,7],[10,12,0,0,28,19,0,0,0,0,10,19,0,0,7,19] >;
C7⋊D7 in GAP, Magma, Sage, TeX
C_7\rtimes D_7
% in TeX
G:=Group("C7:D7");
// GroupNames label
G:=SmallGroup(98,4);
// by ID
G=gap.SmallGroup(98,4);
# by ID
G:=PCGroup([3,-2,-7,-7,73,758]);
// Polycyclic
G:=Group<a,b,c|a^7=b^7=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C7⋊D7 in TeX
Character table of C7⋊D7 in TeX