Copied to
clipboard

G = C8×C13⋊C3order 312 = 23·3·13

Direct product of C8 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C8×C13⋊C3, C104⋊C3, C134C24, C52.4C6, C26.4C12, C2.(C4×C13⋊C3), C4.2(C2×C13⋊C3), (C4×C13⋊C3).4C2, (C2×C13⋊C3).3C4, SmallGroup(312,2)

Series: Derived Chief Lower central Upper central

C1C13 — C8×C13⋊C3
C1C13C26C52C4×C13⋊C3 — C8×C13⋊C3
C13 — C8×C13⋊C3
C1C8

Generators and relations for C8×C13⋊C3
 G = < a,b,c | a8=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >

13C3
13C6
13C12
13C24

Smallest permutation representation of C8×C13⋊C3
On 104 points
Generators in S104
(1 92 40 66 14 79 27 53)(2 93 41 67 15 80 28 54)(3 94 42 68 16 81 29 55)(4 95 43 69 17 82 30 56)(5 96 44 70 18 83 31 57)(6 97 45 71 19 84 32 58)(7 98 46 72 20 85 33 59)(8 99 47 73 21 86 34 60)(9 100 48 74 22 87 35 61)(10 101 49 75 23 88 36 62)(11 102 50 76 24 89 37 63)(12 103 51 77 25 90 38 64)(13 104 52 78 26 91 39 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)(67 69 75)(68 72 71)(70 78 76)(73 74 77)(80 82 88)(81 85 84)(83 91 89)(86 87 90)(93 95 101)(94 98 97)(96 104 102)(99 100 103)

G:=sub<Sym(104)| (1,92,40,66,14,79,27,53)(2,93,41,67,15,80,28,54)(3,94,42,68,16,81,29,55)(4,95,43,69,17,82,30,56)(5,96,44,70,18,83,31,57)(6,97,45,71,19,84,32,58)(7,98,46,72,20,85,33,59)(8,99,47,73,21,86,34,60)(9,100,48,74,22,87,35,61)(10,101,49,75,23,88,36,62)(11,102,50,76,24,89,37,63)(12,103,51,77,25,90,38,64)(13,104,52,78,26,91,39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90)(93,95,101)(94,98,97)(96,104,102)(99,100,103)>;

G:=Group( (1,92,40,66,14,79,27,53)(2,93,41,67,15,80,28,54)(3,94,42,68,16,81,29,55)(4,95,43,69,17,82,30,56)(5,96,44,70,18,83,31,57)(6,97,45,71,19,84,32,58)(7,98,46,72,20,85,33,59)(8,99,47,73,21,86,34,60)(9,100,48,74,22,87,35,61)(10,101,49,75,23,88,36,62)(11,102,50,76,24,89,37,63)(12,103,51,77,25,90,38,64)(13,104,52,78,26,91,39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)(67,69,75)(68,72,71)(70,78,76)(73,74,77)(80,82,88)(81,85,84)(83,91,89)(86,87,90)(93,95,101)(94,98,97)(96,104,102)(99,100,103) );

G=PermutationGroup([[(1,92,40,66,14,79,27,53),(2,93,41,67,15,80,28,54),(3,94,42,68,16,81,29,55),(4,95,43,69,17,82,30,56),(5,96,44,70,18,83,31,57),(6,97,45,71,19,84,32,58),(7,98,46,72,20,85,33,59),(8,99,47,73,21,86,34,60),(9,100,48,74,22,87,35,61),(10,101,49,75,23,88,36,62),(11,102,50,76,24,89,37,63),(12,103,51,77,25,90,38,64),(13,104,52,78,26,91,39,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64),(67,69,75),(68,72,71),(70,78,76),(73,74,77),(80,82,88),(81,85,84),(83,91,89),(86,87,90),(93,95,101),(94,98,97),(96,104,102),(99,100,103)]])

56 conjugacy classes

class 1  2 3A3B4A4B6A6B8A8B8C8D12A12B12C12D13A13B13C13D24A···24H26A26B26C26D52A···52H104A···104P
order123344668888121212121313131324···242626262652···52104···104
size111313111313111113131313333313···1333333···33···3

56 irreducible representations

dim111111113333
type++
imageC1C2C3C4C6C8C12C24C13⋊C3C2×C13⋊C3C4×C13⋊C3C8×C13⋊C3
kernelC8×C13⋊C3C4×C13⋊C3C104C2×C13⋊C3C52C13⋊C3C26C13C8C4C2C1
# reps1122244844816

Matrix representation of C8×C13⋊C3 in GL4(𝔽313) generated by

188000
028800
002880
000288
,
1000
0001
010118
0017
,
214000
011118
001186
007194
G:=sub<GL(4,GF(313))| [188,0,0,0,0,288,0,0,0,0,288,0,0,0,0,288],[1,0,0,0,0,0,1,0,0,0,0,1,0,1,118,7],[214,0,0,0,0,1,0,0,0,1,118,7,0,118,6,194] >;

C8×C13⋊C3 in GAP, Magma, Sage, TeX

C_8\times C_{13}\rtimes C_3
% in TeX

G:=Group("C8xC13:C3");
// GroupNames label

G:=SmallGroup(312,2);
// by ID

G=gap.SmallGroup(312,2);
# by ID

G:=PCGroup([5,-2,-3,-2,-2,-13,30,42,909]);
// Polycyclic

G:=Group<a,b,c|a^8=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations

Export

Subgroup lattice of C8×C13⋊C3 in TeX

׿
×
𝔽