Extensions 1→N→G→Q→1 with N=C2×C26 and Q=S3

Direct product G=N×Q with N=C2×C26 and Q=S3
dρLabelID
S3×C2×C26156S3xC2xC26312,59

Semidirect products G=N:Q with N=C2×C26 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C26)⋊1S3 = C13×S4φ: S3/C1S3 ⊆ Aut C2×C26523(C2xC26):1S3312,47
(C2×C26)⋊2S3 = C13⋊S4φ: S3/C1S3 ⊆ Aut C2×C26526+(C2xC26):2S3312,48
(C2×C26)⋊3S3 = C13×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C261562(C2xC26):3S3312,36
(C2×C26)⋊4S3 = C397D4φ: S3/C3C2 ⊆ Aut C2×C261562(C2xC26):4S3312,41
(C2×C26)⋊5S3 = C22×D39φ: S3/C3C2 ⊆ Aut C2×C26156(C2xC26):5S3312,60

Non-split extensions G=N.Q with N=C2×C26 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C26).S3 = C2×Dic39φ: S3/C3C2 ⊆ Aut C2×C26312(C2xC26).S3312,40
(C2×C26).2S3 = Dic3×C26central extension (φ=1)312(C2xC26).2S3312,35

׿
×
𝔽