d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C2×C26 | 156 | S3xC2xC26 | 312,59 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C26)⋊1S3 = C13×S4 | φ: S3/C1 → S3 ⊆ Aut C2×C26 | 52 | 3 | (C2xC26):1S3 | 312,47 |
(C2×C26)⋊2S3 = C13⋊S4 | φ: S3/C1 → S3 ⊆ Aut C2×C26 | 52 | 6+ | (C2xC26):2S3 | 312,48 |
(C2×C26)⋊3S3 = C13×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C2×C26 | 156 | 2 | (C2xC26):3S3 | 312,36 |
(C2×C26)⋊4S3 = C39⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C2×C26 | 156 | 2 | (C2xC26):4S3 | 312,41 |
(C2×C26)⋊5S3 = C22×D39 | φ: S3/C3 → C2 ⊆ Aut C2×C26 | 156 | (C2xC26):5S3 | 312,60 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C26).S3 = C2×Dic39 | φ: S3/C3 → C2 ⊆ Aut C2×C26 | 312 | (C2xC26).S3 | 312,40 | |
(C2×C26).2S3 = Dic3×C26 | central extension (φ=1) | 312 | (C2xC26).2S3 | 312,35 |