non-abelian, soluble, monomial
Aliases: C13⋊S4, A4⋊D13, C22⋊D39, (C2×C26)⋊2S3, (A4×C13)⋊1C2, SmallGroup(312,48)
Series: Derived ►Chief ►Lower central ►Upper central
A4×C13 — C13⋊S4 |
Generators and relations for C13⋊S4
G = < a,b,c,d,e | a13=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Character table of C13⋊S4
class | 1 | 2A | 2B | 3 | 4 | 13A | 13B | 13C | 13D | 13E | 13F | 26A | 26B | 26C | 26D | 26E | 26F | 39A | 39B | 39C | 39D | 39E | 39F | 39G | 39H | 39I | 39J | 39K | 39L | |
size | 1 | 3 | 78 | 8 | 78 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 0 | -1 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 0 | 2 | 0 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | ζ1310+ζ133 | ζ139+ζ134 | ζ138+ζ135 | ζ137+ζ136 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | ζ1310+ζ133 | ζ1311+ζ132 | ζ1312+ζ13 | ζ1312+ζ13 | ζ1311+ζ132 | orthogonal lifted from D13 |
ρ5 | 2 | 2 | 0 | 2 | 0 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | ζ1312+ζ13 | ζ1310+ζ133 | ζ137+ζ136 | ζ1311+ζ132 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | ζ1312+ζ13 | ζ138+ζ135 | ζ139+ζ134 | ζ139+ζ134 | ζ138+ζ135 | orthogonal lifted from D13 |
ρ6 | 2 | 2 | 0 | 2 | 0 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | ζ137+ζ136 | ζ138+ζ135 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | ζ137+ζ136 | ζ139+ζ134 | ζ1311+ζ132 | ζ1311+ζ132 | ζ139+ζ134 | orthogonal lifted from D13 |
ρ7 | 2 | 2 | 0 | 2 | 0 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ1311+ζ132 | ζ137+ζ136 | ζ1312+ζ13 | ζ139+ζ134 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | ζ1311+ζ132 | ζ1310+ζ133 | ζ138+ζ135 | ζ138+ζ135 | ζ1310+ζ133 | orthogonal lifted from D13 |
ρ8 | 2 | 2 | 0 | 2 | 0 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | ζ139+ζ134 | ζ1312+ζ13 | ζ1311+ζ132 | ζ138+ζ135 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | ζ139+ζ134 | ζ137+ζ136 | ζ1310+ζ133 | ζ1310+ζ133 | ζ137+ζ136 | orthogonal lifted from D13 |
ρ9 | 2 | 2 | 0 | 2 | 0 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | ζ138+ζ135 | ζ1311+ζ132 | ζ139+ζ134 | ζ1310+ζ133 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | ζ138+ζ135 | ζ1312+ζ13 | ζ137+ζ136 | ζ137+ζ136 | ζ1312+ζ13 | orthogonal lifted from D13 |
ρ10 | 2 | 2 | 0 | -1 | 0 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | ζ3ζ1312-ζ3ζ13-ζ13 | ζ32ζ1310-ζ32ζ133-ζ133 | ζ3ζ137-ζ3ζ136-ζ136 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ3ζ137+ζ3ζ136-ζ137 | -ζ32ζ1310+ζ32ζ133-ζ1310 | -ζ3ζ1312+ζ3ζ13-ζ1312 | -ζ3ζ138+ζ3ζ135-ζ138 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ32ζ138+ζ32ζ135-ζ138 | orthogonal lifted from D39 |
ρ11 | 2 | 2 | 0 | -1 | 0 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | -ζ3ζ137+ζ3ζ136-ζ137 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ32ζ1311-ζ32ζ132-ζ132 | ζ32ζ139-ζ32ζ134-ζ134 | orthogonal lifted from D39 |
ρ12 | 2 | 2 | 0 | -1 | 0 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | -ζ32ζ138+ζ32ζ135-ζ138 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ32ζ139-ζ32ζ134-ζ134 | ζ3ζ1311-ζ3ζ132-ζ132 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ3ζ1312+ζ3ζ13-ζ1312 | orthogonal lifted from D39 |
ρ13 | 2 | 2 | 0 | -1 | 0 | ζ1312+ζ13 | ζ1311+ζ132 | ζ139+ζ134 | ζ1310+ζ133 | ζ137+ζ136 | ζ138+ζ135 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ3ζ1312-ζ3ζ13-ζ13 | orthogonal lifted from D39 |
ρ14 | 2 | 2 | 0 | -1 | 0 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ3ζ1311-ζ3ζ132-ζ132 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ32ζ1311-ζ32ζ132-ζ132 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ32ζ139+ζ32ζ134-ζ139 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ3ζ137-ζ3ζ136-ζ136 | orthogonal lifted from D39 |
ρ15 | 2 | 2 | 0 | -1 | 0 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | ζ32ζ1310-ζ32ζ133-ζ133 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ3ζ138+ζ3ζ135-ζ138 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ32ζ139+ζ32ζ134-ζ139 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ32ζ1311-ζ32ζ132-ζ132 | orthogonal lifted from D39 |
ρ16 | 2 | 2 | 0 | -1 | 0 | ζ139+ζ134 | ζ138+ζ135 | ζ1310+ζ133 | ζ1312+ζ13 | ζ1311+ζ132 | ζ137+ζ136 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ32ζ1310+ζ32ζ133-ζ1310 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ32ζ139-ζ32ζ134-ζ134 | ζ32ζ1311-ζ32ζ132-ζ132 | ζ3ζ1311-ζ3ζ132-ζ132 | -ζ32ζ139+ζ32ζ134-ζ139 | orthogonal lifted from D39 |
ρ17 | 2 | 2 | 0 | -1 | 0 | ζ1311+ζ132 | ζ139+ζ134 | ζ138+ζ135 | ζ137+ζ136 | ζ1312+ζ13 | ζ1310+ζ133 | ζ138+ζ135 | ζ1311+ζ132 | ζ137+ζ136 | ζ139+ζ134 | ζ1312+ζ13 | ζ1310+ζ133 | -ζ32ζ1310+ζ32ζ133-ζ1310 | -ζ32ζ139+ζ32ζ134-ζ139 | -ζ32ζ138+ζ32ζ135-ζ138 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ3ζ137+ζ3ζ136-ζ137 | -ζ3ζ138+ζ3ζ135-ζ138 | ζ32ζ139-ζ32ζ134-ζ134 | ζ32ζ1310-ζ32ζ133-ζ133 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ3ζ1312-ζ3ζ13-ζ13 | ζ3ζ1311-ζ3ζ132-ζ132 | orthogonal lifted from D39 |
ρ18 | 2 | 2 | 0 | -1 | 0 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ3ζ1311-ζ3ζ132-ζ132 | -ζ3ζ137+ζ3ζ136-ζ137 | -ζ3ζ1312+ζ3ζ13-ζ1312 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ32ζ139-ζ32ζ134-ζ134 | ζ3ζ1312-ζ3ζ13-ζ13 | ζ3ζ137-ζ3ζ136-ζ136 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ32ζ1310+ζ32ζ133-ζ1310 | -ζ3ζ138+ζ3ζ135-ζ138 | -ζ32ζ138+ζ32ζ135-ζ138 | ζ32ζ1310-ζ32ζ133-ζ133 | orthogonal lifted from D39 |
ρ19 | 2 | 2 | 0 | -1 | 0 | ζ137+ζ136 | ζ1312+ζ13 | ζ1311+ζ132 | ζ138+ζ135 | ζ1310+ζ133 | ζ139+ζ134 | ζ1311+ζ132 | ζ137+ζ136 | ζ138+ζ135 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | -ζ32ζ139+ζ32ζ134-ζ139 | ζ3ζ1312-ζ3ζ13-ζ13 | ζ32ζ1311-ζ32ζ132-ζ132 | -ζ3ζ138+ζ3ζ135-ζ138 | -ζ32ζ138+ζ32ζ135-ζ138 | ζ3ζ1311-ζ3ζ132-ζ132 | -ζ3ζ1312+ζ3ζ13-ζ1312 | ζ32ζ139-ζ32ζ134-ζ134 | ζ3ζ137-ζ3ζ136-ζ136 | -ζ32ζ1310+ζ32ζ133-ζ1310 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ3ζ137+ζ3ζ136-ζ137 | orthogonal lifted from D39 |
ρ20 | 2 | 2 | 0 | -1 | 0 | ζ138+ζ135 | ζ1310+ζ133 | ζ137+ζ136 | ζ1311+ζ132 | ζ139+ζ134 | ζ1312+ζ13 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ1310+ζ133 | ζ139+ζ134 | ζ1312+ζ13 | -ζ3ζ1312+ζ3ζ13-ζ1312 | -ζ32ζ1310+ζ32ζ133-ζ1310 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ32ζ1311-ζ32ζ132-ζ132 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ3ζ137-ζ3ζ136-ζ136 | ζ32ζ1310-ζ32ζ133-ζ133 | ζ3ζ1312-ζ3ζ13-ζ13 | -ζ32ζ138+ζ32ζ135-ζ138 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ32ζ139+ζ32ζ134-ζ139 | -ζ3ζ138+ζ3ζ135-ζ138 | orthogonal lifted from D39 |
ρ21 | 2 | 2 | 0 | -1 | 0 | ζ1310+ζ133 | ζ137+ζ136 | ζ1312+ζ13 | ζ139+ζ134 | ζ138+ζ135 | ζ1311+ζ132 | ζ1312+ζ13 | ζ1310+ζ133 | ζ139+ζ134 | ζ137+ζ136 | ζ138+ζ135 | ζ1311+ζ132 | ζ32ζ1311-ζ32ζ132-ζ132 | ζ3ζ137-ζ3ζ136-ζ136 | ζ3ζ1312-ζ3ζ13-ζ13 | ζ32ζ139-ζ32ζ134-ζ134 | -ζ32ζ139+ζ32ζ134-ζ139 | -ζ3ζ1312+ζ3ζ13-ζ1312 | -ζ3ζ137+ζ3ζ136-ζ137 | ζ3ζ1311-ζ3ζ132-ζ132 | ζ32ζ1310-ζ32ζ133-ζ133 | -ζ32ζ138+ζ32ζ135-ζ138 | -ζ3ζ138+ζ3ζ135-ζ138 | -ζ32ζ1310+ζ32ζ133-ζ1310 | orthogonal lifted from D39 |
ρ22 | 3 | -1 | 1 | 0 | -1 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ23 | 3 | -1 | -1 | 0 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ24 | 6 | -2 | 0 | 0 | 0 | 3ζ138+3ζ135 | 3ζ1310+3ζ133 | 3ζ137+3ζ136 | 3ζ1311+3ζ132 | 3ζ139+3ζ134 | 3ζ1312+3ζ13 | -ζ137-ζ136 | -ζ138-ζ135 | -ζ1311-ζ132 | -ζ1310-ζ133 | -ζ139-ζ134 | -ζ1312-ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | -2 | 0 | 0 | 0 | 3ζ1310+3ζ133 | 3ζ137+3ζ136 | 3ζ1312+3ζ13 | 3ζ139+3ζ134 | 3ζ138+3ζ135 | 3ζ1311+3ζ132 | -ζ1312-ζ13 | -ζ1310-ζ133 | -ζ139-ζ134 | -ζ137-ζ136 | -ζ138-ζ135 | -ζ1311-ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | -2 | 0 | 0 | 0 | 3ζ139+3ζ134 | 3ζ138+3ζ135 | 3ζ1310+3ζ133 | 3ζ1312+3ζ13 | 3ζ1311+3ζ132 | 3ζ137+3ζ136 | -ζ1310-ζ133 | -ζ139-ζ134 | -ζ1312-ζ13 | -ζ138-ζ135 | -ζ1311-ζ132 | -ζ137-ζ136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | -2 | 0 | 0 | 0 | 3ζ137+3ζ136 | 3ζ1312+3ζ13 | 3ζ1311+3ζ132 | 3ζ138+3ζ135 | 3ζ1310+3ζ133 | 3ζ139+3ζ134 | -ζ1311-ζ132 | -ζ137-ζ136 | -ζ138-ζ135 | -ζ1312-ζ13 | -ζ1310-ζ133 | -ζ139-ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | -2 | 0 | 0 | 0 | 3ζ1312+3ζ13 | 3ζ1311+3ζ132 | 3ζ139+3ζ134 | 3ζ1310+3ζ133 | 3ζ137+3ζ136 | 3ζ138+3ζ135 | -ζ139-ζ134 | -ζ1312-ζ13 | -ζ1310-ζ133 | -ζ1311-ζ132 | -ζ137-ζ136 | -ζ138-ζ135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 6 | -2 | 0 | 0 | 0 | 3ζ1311+3ζ132 | 3ζ139+3ζ134 | 3ζ138+3ζ135 | 3ζ137+3ζ136 | 3ζ1312+3ζ13 | 3ζ1310+3ζ133 | -ζ138-ζ135 | -ζ1311-ζ132 | -ζ137-ζ136 | -ζ139-ζ134 | -ζ1312-ζ13 | -ζ1310-ζ133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 40)(37 41)(38 42)(39 43)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 38)(12 39)(13 27)(14 50)(15 51)(16 52)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)
(14 33 50)(15 34 51)(16 35 52)(17 36 40)(18 37 41)(19 38 42)(20 39 43)(21 27 44)(22 28 45)(23 29 46)(24 30 47)(25 31 48)(26 32 49)
(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(14 40)(15 52)(16 51)(17 50)(18 49)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 42)(26 41)(27 29)(30 39)(31 38)(32 37)(33 36)(34 35)
G:=sub<Sym(52)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,22)(2,23)(3,24)(4,25)(5,26)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,40)(37,41)(38,42)(39,43), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,27)(14,50)(15,51)(16,52)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49), (14,33,50)(15,34,51)(16,35,52)(17,36,40)(18,37,41)(19,38,42)(20,39,43)(21,27,44)(22,28,45)(23,29,46)(24,30,47)(25,31,48)(26,32,49), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(14,40)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,29)(30,39)(31,38)(32,37)(33,36)(34,35)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,22)(2,23)(3,24)(4,25)(5,26)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,40)(37,41)(38,42)(39,43), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,27)(14,50)(15,51)(16,52)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49), (14,33,50)(15,34,51)(16,35,52)(17,36,40)(18,37,41)(19,38,42)(20,39,43)(21,27,44)(22,28,45)(23,29,46)(24,30,47)(25,31,48)(26,32,49), (2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(14,40)(15,52)(16,51)(17,50)(18,49)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,42)(26,41)(27,29)(30,39)(31,38)(32,37)(33,36)(34,35) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,40),(37,41),(38,42),(39,43)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,38),(12,39),(13,27),(14,50),(15,51),(16,52),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49)], [(14,33,50),(15,34,51),(16,35,52),(17,36,40),(18,37,41),(19,38,42),(20,39,43),(21,27,44),(22,28,45),(23,29,46),(24,30,47),(25,31,48),(26,32,49)], [(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(14,40),(15,52),(16,51),(17,50),(18,49),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,42),(26,41),(27,29),(30,39),(31,38),(32,37),(33,36),(34,35)]])
Matrix representation of C13⋊S4 ►in GL5(𝔽157)
4 | 58 | 0 | 0 | 0 |
99 | 62 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 156 | 1 |
0 | 0 | 0 | 156 | 0 |
0 | 0 | 1 | 156 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 156 |
0 | 0 | 1 | 0 | 156 |
0 | 0 | 0 | 0 | 156 |
156 | 1 | 0 | 0 | 0 |
156 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
95 | 58 | 0 | 0 | 0 |
153 | 62 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(157))| [4,99,0,0,0,58,62,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,156,156,156,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,156,156,156],[156,156,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[95,153,0,0,0,58,62,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
C13⋊S4 in GAP, Magma, Sage, TeX
C_{13}\rtimes S_4
% in TeX
G:=Group("C13:S4");
// GroupNames label
G:=SmallGroup(312,48);
// by ID
G=gap.SmallGroup(312,48);
# by ID
G:=PCGroup([5,-2,-3,-13,-2,2,41,1082,3123,1568,1954,2934]);
// Polycyclic
G:=Group<a,b,c,d,e|a^13=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of C13⋊S4 in TeX
Character table of C13⋊S4 in TeX