Extensions 1→N→G→Q→1 with N=C156 and Q=C2

Direct product G=NxQ with N=C156 and Q=C2
dρLabelID
C2xC156312C2xC156312,42

Semidirect products G=N:Q with N=C156 and Q=C2
extensionφ:Q→Aut NdρLabelID
C156:1C2 = D156φ: C2/C1C2 ⊆ Aut C1561562+C156:1C2312,39
C156:2C2 = C4xD39φ: C2/C1C2 ⊆ Aut C1561562C156:2C2312,38
C156:3C2 = C3xD52φ: C2/C1C2 ⊆ Aut C1561562C156:3C2312,29
C156:4C2 = C12xD13φ: C2/C1C2 ⊆ Aut C1561562C156:4C2312,28
C156:5C2 = C13xD12φ: C2/C1C2 ⊆ Aut C1561562C156:5C2312,34
C156:6C2 = S3xC52φ: C2/C1C2 ⊆ Aut C1561562C156:6C2312,33
C156:7C2 = D4xC39φ: C2/C1C2 ⊆ Aut C1561562C156:7C2312,43

Non-split extensions G=N.Q with N=C156 and Q=C2
extensionφ:Q→Aut NdρLabelID
C156.1C2 = Dic78φ: C2/C1C2 ⊆ Aut C1563122-C156.1C2312,37
C156.2C2 = C39:3C8φ: C2/C1C2 ⊆ Aut C1563122C156.2C2312,5
C156.3C2 = C3xDic26φ: C2/C1C2 ⊆ Aut C1563122C156.3C2312,27
C156.4C2 = C3xC13:2C8φ: C2/C1C2 ⊆ Aut C1563122C156.4C2312,4
C156.5C2 = C13xDic6φ: C2/C1C2 ⊆ Aut C1563122C156.5C2312,32
C156.6C2 = C13xC3:C8φ: C2/C1C2 ⊆ Aut C1563122C156.6C2312,3
C156.7C2 = Q8xC39φ: C2/C1C2 ⊆ Aut C1563122C156.7C2312,44

׿
x
:
Z
F
o
wr
Q
<