Copied to
clipboard

G = C3xD52order 312 = 23·3·13

Direct product of C3 and D52

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3xD52, C39:5D4, C52:5C6, C156:3C2, D26:4C6, C12:3D13, C6.15D26, C78.15C22, C4:(C3xD13), C13:4(C3xD4), (C6xD13):4C2, C2.4(C6xD13), C26.11(C2xC6), SmallGroup(312,29)

Series: Derived Chief Lower central Upper central

C1C26 — C3xD52
C1C13C26C78C6xD13 — C3xD52
C13C26 — C3xD52
C1C6C12

Generators and relations for C3xD52
 G = < a,b,c | a3=b52=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 208 in 32 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C2xC6, C3xD4, D13, D26, C3xD13, D52, C6xD13, C3xD52
26C2
26C2
13C22
13C22
26C6
26C6
2D13
2D13
13D4
13C2xC6
13C2xC6
2C3xD13
2C3xD13
13C3xD4

Smallest permutation representation of C3xD52
On 156 points
Generators in S156
(1 80 130)(2 81 131)(3 82 132)(4 83 133)(5 84 134)(6 85 135)(7 86 136)(8 87 137)(9 88 138)(10 89 139)(11 90 140)(12 91 141)(13 92 142)(14 93 143)(15 94 144)(16 95 145)(17 96 146)(18 97 147)(19 98 148)(20 99 149)(21 100 150)(22 101 151)(23 102 152)(24 103 153)(25 104 154)(26 53 155)(27 54 156)(28 55 105)(29 56 106)(30 57 107)(31 58 108)(32 59 109)(33 60 110)(34 61 111)(35 62 112)(36 63 113)(37 64 114)(38 65 115)(39 66 116)(40 67 117)(41 68 118)(42 69 119)(43 70 120)(44 71 121)(45 72 122)(46 73 123)(47 74 124)(48 75 125)(49 76 126)(50 77 127)(51 78 128)(52 79 129)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(53 54)(55 104)(56 103)(57 102)(58 101)(59 100)(60 99)(61 98)(62 97)(63 96)(64 95)(65 94)(66 93)(67 92)(68 91)(69 90)(70 89)(71 88)(72 87)(73 86)(74 85)(75 84)(76 83)(77 82)(78 81)(79 80)(105 154)(106 153)(107 152)(108 151)(109 150)(110 149)(111 148)(112 147)(113 146)(114 145)(115 144)(116 143)(117 142)(118 141)(119 140)(120 139)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 132)(128 131)(129 130)(155 156)

G:=sub<Sym(156)| (1,80,130)(2,81,131)(3,82,132)(4,83,133)(5,84,134)(6,85,135)(7,86,136)(8,87,137)(9,88,138)(10,89,139)(11,90,140)(12,91,141)(13,92,142)(14,93,143)(15,94,144)(16,95,145)(17,96,146)(18,97,147)(19,98,148)(20,99,149)(21,100,150)(22,101,151)(23,102,152)(24,103,153)(25,104,154)(26,53,155)(27,54,156)(28,55,105)(29,56,106)(30,57,107)(31,58,108)(32,59,109)(33,60,110)(34,61,111)(35,62,112)(36,63,113)(37,64,114)(38,65,115)(39,66,116)(40,67,117)(41,68,118)(42,69,119)(43,70,120)(44,71,121)(45,72,122)(46,73,123)(47,74,124)(48,75,125)(49,76,126)(50,77,127)(51,78,128)(52,79,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,54)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,80)(105,154)(106,153)(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)(113,146)(114,145)(115,144)(116,143)(117,142)(118,141)(119,140)(120,139)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(155,156)>;

G:=Group( (1,80,130)(2,81,131)(3,82,132)(4,83,133)(5,84,134)(6,85,135)(7,86,136)(8,87,137)(9,88,138)(10,89,139)(11,90,140)(12,91,141)(13,92,142)(14,93,143)(15,94,144)(16,95,145)(17,96,146)(18,97,147)(19,98,148)(20,99,149)(21,100,150)(22,101,151)(23,102,152)(24,103,153)(25,104,154)(26,53,155)(27,54,156)(28,55,105)(29,56,106)(30,57,107)(31,58,108)(32,59,109)(33,60,110)(34,61,111)(35,62,112)(36,63,113)(37,64,114)(38,65,115)(39,66,116)(40,67,117)(41,68,118)(42,69,119)(43,70,120)(44,71,121)(45,72,122)(46,73,123)(47,74,124)(48,75,125)(49,76,126)(50,77,127)(51,78,128)(52,79,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(53,54)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,81)(79,80)(105,154)(106,153)(107,152)(108,151)(109,150)(110,149)(111,148)(112,147)(113,146)(114,145)(115,144)(116,143)(117,142)(118,141)(119,140)(120,139)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,130)(155,156) );

G=PermutationGroup([[(1,80,130),(2,81,131),(3,82,132),(4,83,133),(5,84,134),(6,85,135),(7,86,136),(8,87,137),(9,88,138),(10,89,139),(11,90,140),(12,91,141),(13,92,142),(14,93,143),(15,94,144),(16,95,145),(17,96,146),(18,97,147),(19,98,148),(20,99,149),(21,100,150),(22,101,151),(23,102,152),(24,103,153),(25,104,154),(26,53,155),(27,54,156),(28,55,105),(29,56,106),(30,57,107),(31,58,108),(32,59,109),(33,60,110),(34,61,111),(35,62,112),(36,63,113),(37,64,114),(38,65,115),(39,66,116),(40,67,117),(41,68,118),(42,69,119),(43,70,120),(44,71,121),(45,72,122),(46,73,123),(47,74,124),(48,75,125),(49,76,126),(50,77,127),(51,78,128),(52,79,129)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(53,54),(55,104),(56,103),(57,102),(58,101),(59,100),(60,99),(61,98),(62,97),(63,96),(64,95),(65,94),(66,93),(67,92),(68,91),(69,90),(70,89),(71,88),(72,87),(73,86),(74,85),(75,84),(76,83),(77,82),(78,81),(79,80),(105,154),(106,153),(107,152),(108,151),(109,150),(110,149),(111,148),(112,147),(113,146),(114,145),(115,144),(116,143),(117,142),(118,141),(119,140),(120,139),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,132),(128,131),(129,130),(155,156)]])

87 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F12A12B13A···13F26A···26F39A···39L52A···52L78A···78L156A···156X
order1222334666666121213···1326···2639···3952···5278···78156···156
size1126261121126262626222···22···22···22···22···22···2

87 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6D4C3xD4D13D26C3xD13D52C6xD13C3xD52
kernelC3xD52C156C6xD13D52C52D26C39C13C12C6C4C3C2C1
# reps112224126612121224

Matrix representation of C3xD52 in GL4(F157) generated by

144000
014400
0010
0001
,
1509600
362200
0074116
005220
,
1505100
36700
007652
005581
G:=sub<GL(4,GF(157))| [144,0,0,0,0,144,0,0,0,0,1,0,0,0,0,1],[150,36,0,0,96,22,0,0,0,0,74,52,0,0,116,20],[150,36,0,0,51,7,0,0,0,0,76,55,0,0,52,81] >;

C3xD52 in GAP, Magma, Sage, TeX

C_3\times D_{52}
% in TeX

G:=Group("C3xD52");
// GroupNames label

G:=SmallGroup(312,29);
// by ID

G=gap.SmallGroup(312,29);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-13,141,66,7204]);
// Polycyclic

G:=Group<a,b,c|a^3=b^52=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xD52 in TeX

׿
x
:
Z
F
o
wr
Q
<