Copied to
clipboard

G = D4×C39order 312 = 23·3·13

Direct product of C39 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C39, C4⋊C78, C527C6, C123C26, C1567C2, C222C78, C78.23C22, (C2×C6)⋊1C26, (C2×C78)⋊1C2, (C2×C26)⋊9C6, C2.1(C2×C78), C6.6(C2×C26), C26.14(C2×C6), SmallGroup(312,43)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C39
C1C2C26C78C2×C78 — D4×C39
C1C2 — D4×C39
C1C78 — D4×C39

Generators and relations for D4×C39
 G = < a,b,c | a39=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

2C2
2C2
2C6
2C6
2C26
2C26
2C78
2C78

Smallest permutation representation of D4×C39
On 156 points
Generators in S156
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 98 150 50)(2 99 151 51)(3 100 152 52)(4 101 153 53)(5 102 154 54)(6 103 155 55)(7 104 156 56)(8 105 118 57)(9 106 119 58)(10 107 120 59)(11 108 121 60)(12 109 122 61)(13 110 123 62)(14 111 124 63)(15 112 125 64)(16 113 126 65)(17 114 127 66)(18 115 128 67)(19 116 129 68)(20 117 130 69)(21 79 131 70)(22 80 132 71)(23 81 133 72)(24 82 134 73)(25 83 135 74)(26 84 136 75)(27 85 137 76)(28 86 138 77)(29 87 139 78)(30 88 140 40)(31 89 141 41)(32 90 142 42)(33 91 143 43)(34 92 144 44)(35 93 145 45)(36 94 146 46)(37 95 147 47)(38 96 148 48)(39 97 149 49)
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 40)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 49)(79 131)(80 132)(81 133)(82 134)(83 135)(84 136)(85 137)(86 138)(87 139)(88 140)(89 141)(90 142)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 151)(100 152)(101 153)(102 154)(103 155)(104 156)(105 118)(106 119)(107 120)(108 121)(109 122)(110 123)(111 124)(112 125)(113 126)(114 127)(115 128)(116 129)(117 130)

G:=sub<Sym(156)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,98,150,50)(2,99,151,51)(3,100,152,52)(4,101,153,53)(5,102,154,54)(6,103,155,55)(7,104,156,56)(8,105,118,57)(9,106,119,58)(10,107,120,59)(11,108,121,60)(12,109,122,61)(13,110,123,62)(14,111,124,63)(15,112,125,64)(16,113,126,65)(17,114,127,66)(18,115,128,67)(19,116,129,68)(20,117,130,69)(21,79,131,70)(22,80,132,71)(23,81,133,72)(24,82,134,73)(25,83,135,74)(26,84,136,75)(27,85,137,76)(28,86,138,77)(29,87,139,78)(30,88,140,40)(31,89,141,41)(32,90,142,42)(33,91,143,43)(34,92,144,44)(35,93,145,45)(36,94,146,46)(37,95,147,47)(38,96,148,48)(39,97,149,49), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152)(101,153)(102,154)(103,155)(104,156)(105,118)(106,119)(107,120)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,98,150,50)(2,99,151,51)(3,100,152,52)(4,101,153,53)(5,102,154,54)(6,103,155,55)(7,104,156,56)(8,105,118,57)(9,106,119,58)(10,107,120,59)(11,108,121,60)(12,109,122,61)(13,110,123,62)(14,111,124,63)(15,112,125,64)(16,113,126,65)(17,114,127,66)(18,115,128,67)(19,116,129,68)(20,117,130,69)(21,79,131,70)(22,80,132,71)(23,81,133,72)(24,82,134,73)(25,83,135,74)(26,84,136,75)(27,85,137,76)(28,86,138,77)(29,87,139,78)(30,88,140,40)(31,89,141,41)(32,90,142,42)(33,91,143,43)(34,92,144,44)(35,93,145,45)(36,94,146,46)(37,95,147,47)(38,96,148,48)(39,97,149,49), (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,49)(79,131)(80,132)(81,133)(82,134)(83,135)(84,136)(85,137)(86,138)(87,139)(88,140)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152)(101,153)(102,154)(103,155)(104,156)(105,118)(106,119)(107,120)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,98,150,50),(2,99,151,51),(3,100,152,52),(4,101,153,53),(5,102,154,54),(6,103,155,55),(7,104,156,56),(8,105,118,57),(9,106,119,58),(10,107,120,59),(11,108,121,60),(12,109,122,61),(13,110,123,62),(14,111,124,63),(15,112,125,64),(16,113,126,65),(17,114,127,66),(18,115,128,67),(19,116,129,68),(20,117,130,69),(21,79,131,70),(22,80,132,71),(23,81,133,72),(24,82,134,73),(25,83,135,74),(26,84,136,75),(27,85,137,76),(28,86,138,77),(29,87,139,78),(30,88,140,40),(31,89,141,41),(32,90,142,42),(33,91,143,43),(34,92,144,44),(35,93,145,45),(36,94,146,46),(37,95,147,47),(38,96,148,48),(39,97,149,49)], [(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,40),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,49),(79,131),(80,132),(81,133),(82,134),(83,135),(84,136),(85,137),(86,138),(87,139),(88,140),(89,141),(90,142),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,151),(100,152),(101,153),(102,154),(103,155),(104,156),(105,118),(106,119),(107,120),(108,121),(109,122),(110,123),(111,124),(112,125),(113,126),(114,127),(115,128),(116,129),(117,130)]])

195 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F12A12B13A···13L26A···26L26M···26AJ39A···39X52A···52L78A···78X78Y···78BT156A···156X
order1222334666666121213···1326···2626···2639···3952···5278···7878···78156···156
size1122112112222221···11···12···21···12···21···12···22···2

195 irreducible representations

dim1111111111112222
type++++
imageC1C2C2C3C6C6C13C26C26C39C78C78D4C3×D4D4×C13D4×C39
kernelD4×C39C156C2×C78D4×C13C52C2×C26C3×D4C12C2×C6D4C4C22C39C13C3C1
# reps112224121224242448121224

Matrix representation of D4×C39 in GL2(𝔽157) generated by

1320
0132
,
109155
13248
,
109155
13148
G:=sub<GL(2,GF(157))| [132,0,0,132],[109,132,155,48],[109,131,155,48] >;

D4×C39 in GAP, Magma, Sage, TeX

D_4\times C_{39}
% in TeX

G:=Group("D4xC39");
// GroupNames label

G:=SmallGroup(312,43);
// by ID

G=gap.SmallGroup(312,43);
# by ID

G:=PCGroup([5,-2,-2,-3,-13,-2,1581]);
// Polycyclic

G:=Group<a,b,c|a^39=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4×C39 in TeX

׿
×
𝔽