metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D156, C4⋊D39, C3⋊1D52, C39⋊4D4, C52⋊1S3, C13⋊1D12, C156⋊1C2, D78⋊1C2, C12⋊1D13, C2.4D78, C6.10D26, C26.10D6, C78.10C22, sometimes denoted D312 or Dih156 or Dih312, SmallGroup(312,39)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D156
G = < a,b | a156=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 156)(2 155)(3 154)(4 153)(5 152)(6 151)(7 150)(8 149)(9 148)(10 147)(11 146)(12 145)(13 144)(14 143)(15 142)(16 141)(17 140)(18 139)(19 138)(20 137)(21 136)(22 135)(23 134)(24 133)(25 132)(26 131)(27 130)(28 129)(29 128)(30 127)(31 126)(32 125)(33 124)(34 123)(35 122)(36 121)(37 120)(38 119)(39 118)(40 117)(41 116)(42 115)(43 114)(44 113)(45 112)(46 111)(47 110)(48 109)(49 108)(50 107)(51 106)(52 105)(53 104)(54 103)(55 102)(56 101)(57 100)(58 99)(59 98)(60 97)(61 96)(62 95)(63 94)(64 93)(65 92)(66 91)(67 90)(68 89)(69 88)(70 87)(71 86)(72 85)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)
G:=sub<Sym(156)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,156)(2,155)(3,154)(4,153)(5,152)(6,151)(7,150)(8,149)(9,148)(10,147)(11,146)(12,145)(13,144)(14,143)(15,142)(16,141)(17,140)(18,139)(19,138)(20,137)(21,136)(22,135)(23,134)(24,133)(25,132)(26,131)(27,130)(28,129)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,120)(38,119)(39,118)(40,117)(41,116)(42,115)(43,114)(44,113)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,156)(2,155)(3,154)(4,153)(5,152)(6,151)(7,150)(8,149)(9,148)(10,147)(11,146)(12,145)(13,144)(14,143)(15,142)(16,141)(17,140)(18,139)(19,138)(20,137)(21,136)(22,135)(23,134)(24,133)(25,132)(26,131)(27,130)(28,129)(29,128)(30,127)(31,126)(32,125)(33,124)(34,123)(35,122)(36,121)(37,120)(38,119)(39,118)(40,117)(41,116)(42,115)(43,114)(44,113)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101)(57,100)(58,99)(59,98)(60,97)(61,96)(62,95)(63,94)(64,93)(65,92)(66,91)(67,90)(68,89)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,156),(2,155),(3,154),(4,153),(5,152),(6,151),(7,150),(8,149),(9,148),(10,147),(11,146),(12,145),(13,144),(14,143),(15,142),(16,141),(17,140),(18,139),(19,138),(20,137),(21,136),(22,135),(23,134),(24,133),(25,132),(26,131),(27,130),(28,129),(29,128),(30,127),(31,126),(32,125),(33,124),(34,123),(35,122),(36,121),(37,120),(38,119),(39,118),(40,117),(41,116),(42,115),(43,114),(44,113),(45,112),(46,111),(47,110),(48,109),(49,108),(50,107),(51,106),(52,105),(53,104),(54,103),(55,102),(56,101),(57,100),(58,99),(59,98),(60,97),(61,96),(62,95),(63,94),(64,93),(65,92),(66,91),(67,90),(68,89),(69,88),(70,87),(71,86),(72,85),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79)]])
81 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 6 | 12A | 12B | 13A | ··· | 13F | 26A | ··· | 26F | 39A | ··· | 39L | 52A | ··· | 52L | 78A | ··· | 78L | 156A | ··· | 156X |
order | 1 | 2 | 2 | 2 | 3 | 4 | 6 | 12 | 12 | 13 | ··· | 13 | 26 | ··· | 26 | 39 | ··· | 39 | 52 | ··· | 52 | 78 | ··· | 78 | 156 | ··· | 156 |
size | 1 | 1 | 78 | 78 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
81 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D4 | D6 | D12 | D13 | D26 | D39 | D52 | D78 | D156 |
kernel | D156 | C156 | D78 | C52 | C39 | C26 | C13 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 6 | 6 | 12 | 12 | 12 | 24 |
Matrix representation of D156 ►in GL2(𝔽157) generated by
119 | 98 |
59 | 42 |
38 | 59 |
74 | 119 |
G:=sub<GL(2,GF(157))| [119,59,98,42],[38,74,59,119] >;
D156 in GAP, Magma, Sage, TeX
D_{156}
% in TeX
G:=Group("D156");
// GroupNames label
G:=SmallGroup(312,39);
// by ID
G=gap.SmallGroup(312,39);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-13,61,26,323,7204]);
// Polycyclic
G:=Group<a,b|a^156=b^2=1,b*a*b=a^-1>;
// generators/relations
Export