metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C20).2D4, (C2×C4).2D20, (C2×D4).2D10, C23⋊C4.1D5, C23.D5⋊2C4, C23.2(C4×D5), (C22×C10).9D4, C20.D4.1C2, (C22×Dic5)⋊1C4, (D4×C10).2C22, C23.2(C5⋊D4), C5⋊3(C23.D4), C10.29(C23⋊C4), C22.9(D10⋊C4), C23.18D10.1C2, C2.9(C23.1D10), (C5×C23⋊C4).1C2, (C22×C10).2(C2×C4), (C2×C10).66(C22⋊C4), SmallGroup(320,30)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for (C2×C20).D4
G = < a,b,c,d | a2=b4=c20=1, d2=b-1, ab=ba, cac-1=dad-1=ab2, cbc-1=ab-1, bd=db, dcd-1=bc-1 >
Subgroups: 286 in 68 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C10, C10, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic5, C20, C2×C10, C2×C10, C23⋊C4, C4.D4, C22.D4, C5⋊2C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C23.D4, C4.Dic5, C10.D4, C23.D5, C23.D5, C5×C22⋊C4, C22×Dic5, D4×C10, C20.D4, C5×C23⋊C4, C23.18D10, (C2×C20).D4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D10, C23⋊C4, C4×D5, D20, C5⋊D4, C23.D4, D10⋊C4, C23.1D10, (C2×C20).D4
(1 70)(3 72)(5 74)(7 76)(9 78)(11 80)(13 62)(15 64)(17 66)(19 68)(22 47)(24 49)(26 51)(28 53)(30 55)(32 57)(34 59)(36 41)(38 43)(40 45)
(1 28 70 53)(2 29 71 54)(3 55 72 30)(4 56 73 31)(5 32 74 57)(6 33 75 58)(7 59 76 34)(8 60 77 35)(9 36 78 41)(10 37 79 42)(11 43 80 38)(12 44 61 39)(13 40 62 45)(14 21 63 46)(15 47 64 22)(16 48 65 23)(17 24 66 49)(18 25 67 50)(19 51 68 26)(20 52 69 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 37 53 10 70 42 28 79)(2 78 54 36 71 9 29 41)(3 35 30 77 72 60 55 8)(4 7 31 34 73 76 56 59)(5 33 57 6 74 58 32 75)(11 27 38 69 80 52 43 20)(12 19 39 26 61 68 44 51)(13 25 45 18 62 50 40 67)(14 66 46 24 63 17 21 49)(15 23 22 65 64 48 47 16)
G:=sub<Sym(80)| (1,70)(3,72)(5,74)(7,76)(9,78)(11,80)(13,62)(15,64)(17,66)(19,68)(22,47)(24,49)(26,51)(28,53)(30,55)(32,57)(34,59)(36,41)(38,43)(40,45), (1,28,70,53)(2,29,71,54)(3,55,72,30)(4,56,73,31)(5,32,74,57)(6,33,75,58)(7,59,76,34)(8,60,77,35)(9,36,78,41)(10,37,79,42)(11,43,80,38)(12,44,61,39)(13,40,62,45)(14,21,63,46)(15,47,64,22)(16,48,65,23)(17,24,66,49)(18,25,67,50)(19,51,68,26)(20,52,69,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,37,53,10,70,42,28,79)(2,78,54,36,71,9,29,41)(3,35,30,77,72,60,55,8)(4,7,31,34,73,76,56,59)(5,33,57,6,74,58,32,75)(11,27,38,69,80,52,43,20)(12,19,39,26,61,68,44,51)(13,25,45,18,62,50,40,67)(14,66,46,24,63,17,21,49)(15,23,22,65,64,48,47,16)>;
G:=Group( (1,70)(3,72)(5,74)(7,76)(9,78)(11,80)(13,62)(15,64)(17,66)(19,68)(22,47)(24,49)(26,51)(28,53)(30,55)(32,57)(34,59)(36,41)(38,43)(40,45), (1,28,70,53)(2,29,71,54)(3,55,72,30)(4,56,73,31)(5,32,74,57)(6,33,75,58)(7,59,76,34)(8,60,77,35)(9,36,78,41)(10,37,79,42)(11,43,80,38)(12,44,61,39)(13,40,62,45)(14,21,63,46)(15,47,64,22)(16,48,65,23)(17,24,66,49)(18,25,67,50)(19,51,68,26)(20,52,69,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,37,53,10,70,42,28,79)(2,78,54,36,71,9,29,41)(3,35,30,77,72,60,55,8)(4,7,31,34,73,76,56,59)(5,33,57,6,74,58,32,75)(11,27,38,69,80,52,43,20)(12,19,39,26,61,68,44,51)(13,25,45,18,62,50,40,67)(14,66,46,24,63,17,21,49)(15,23,22,65,64,48,47,16) );
G=PermutationGroup([[(1,70),(3,72),(5,74),(7,76),(9,78),(11,80),(13,62),(15,64),(17,66),(19,68),(22,47),(24,49),(26,51),(28,53),(30,55),(32,57),(34,59),(36,41),(38,43),(40,45)], [(1,28,70,53),(2,29,71,54),(3,55,72,30),(4,56,73,31),(5,32,74,57),(6,33,75,58),(7,59,76,34),(8,60,77,35),(9,36,78,41),(10,37,79,42),(11,43,80,38),(12,44,61,39),(13,40,62,45),(14,21,63,46),(15,47,64,22),(16,48,65,23),(17,24,66,49),(18,25,67,50),(19,51,68,26),(20,52,69,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,37,53,10,70,42,28,79),(2,78,54,36,71,9,29,41),(3,35,30,77,72,60,55,8),(4,7,31,34,73,76,56,59),(5,33,57,6,74,58,32,75),(11,27,38,69,80,52,43,20),(12,19,39,26,61,68,44,51),(13,25,45,18,62,50,40,67),(14,66,46,24,63,17,21,49),(15,23,22,65,64,48,47,16)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 10A | 10B | 10C | ··· | 10H | 10I | 10J | 20A | ··· | 20J |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | ··· | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 20 | 20 | 40 | 2 | 2 | 40 | 40 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | ··· | 8 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | D10 | D20 | C4×D5 | C5⋊D4 | C23⋊C4 | C23.D4 | C23.1D10 | (C2×C20).D4 |
kernel | (C2×C20).D4 | C20.D4 | C5×C23⋊C4 | C23.18D10 | C23.D5 | C22×Dic5 | C2×C20 | C22×C10 | C23⋊C4 | C2×D4 | C2×C4 | C23 | C23 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 2 | 4 | 2 |
Matrix representation of (C2×C20).D4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 20 | 20 | 1 | 0 |
0 | 0 | 19 | 19 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 25 | 0 | 32 | 0 |
0 | 0 | 0 | 7 | 0 | 9 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 8 | 9 | 0 |
0 | 0 | 24 | 24 | 0 | 9 |
0 | 0 | 8 | 7 | 33 | 33 |
0 | 0 | 25 | 24 | 17 | 17 |
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 40 |
0 | 0 | 31 | 31 | 40 | 0 |
0 | 0 | 31 | 22 | 10 | 10 |
0 | 0 | 20 | 11 | 30 | 30 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,20,19,0,0,0,40,20,19,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,25,0,0,0,0,32,0,7,0,0,0,0,32,0,0,0,0,0,0,9],[0,1,0,0,0,0,40,7,0,0,0,0,0,0,8,24,8,25,0,0,8,24,7,24,0,0,9,0,33,17,0,0,0,9,33,17],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,11,31,31,20,0,0,11,31,22,11,0,0,0,40,10,30,0,0,40,0,10,30] >;
(C2×C20).D4 in GAP, Magma, Sage, TeX
(C_2\times C_{20}).D_4
% in TeX
G:=Group("(C2xC20).D4");
// GroupNames label
G:=SmallGroup(320,30);
// by ID
G=gap.SmallGroup(320,30);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,141,36,422,346,297,851,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^20=1,d^2=b^-1,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a*b^-1,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations