Copied to
clipboard

G = C4×D40order 320 = 26·5

Direct product of C4 and D40

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D40, C205D8, C42.259D10, C52(C4×D8), (C4×C8)⋊7D5, C810(C4×D5), C4032(C2×C4), (C4×C40)⋊12C2, (C4×D20)⋊1C2, C10.2(C2×D8), C2.1(C2×D40), D2018(C2×C4), C405C428C2, C2.10(C4×D20), C10.37(C4×D4), (C2×C4).61D20, (C2×D40).14C2, C10.3(C4○D8), (C2×C8).286D10, (C2×C20).351D4, D205C443C2, C22.28(C2×D20), C20.217(C4○D4), C4.101(C4○D20), C2.2(D407C2), (C4×C20).326C22, (C2×C40).346C22, (C2×C20).721C23, C20.161(C22×C4), (C2×D20).194C22, C4⋊Dic5.263C22, C4.60(C2×C4×D5), (C2×C10).104(C2×D4), (C2×C4).664(C22×D5), SmallGroup(320,319)

Series: Derived Chief Lower central Upper central

C1C20 — C4×D40
C1C5C10C2×C10C2×C20C2×D20C2×D40 — C4×D40
C5C10C20 — C4×D40
C1C2×C4C42C4×C8

Generators and relations for C4×D40
 G = < a,b,c | a4=b40=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 662 in 134 conjugacy classes, 55 normal (31 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, Dic5, C20, C20, C20, D10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C40, C40, C4×D5, D20, D20, C2×Dic5, C2×C20, C22×D5, C4×D8, D40, C4⋊Dic5, D10⋊C4, C4×C20, C2×C40, C2×C4×D5, C2×D20, C405C4, D205C4, C4×C40, C4×D20, C2×D40, C4×D40
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, D8, C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×D8, C4○D8, C4×D5, D20, C22×D5, C4×D8, D40, C2×C4×D5, C2×D20, C4○D20, C4×D20, C2×D40, D407C2, C4×D40

Smallest permutation representation of C4×D40
On 160 points
Generators in S160
(1 101 136 55)(2 102 137 56)(3 103 138 57)(4 104 139 58)(5 105 140 59)(6 106 141 60)(7 107 142 61)(8 108 143 62)(9 109 144 63)(10 110 145 64)(11 111 146 65)(12 112 147 66)(13 113 148 67)(14 114 149 68)(15 115 150 69)(16 116 151 70)(17 117 152 71)(18 118 153 72)(19 119 154 73)(20 120 155 74)(21 81 156 75)(22 82 157 76)(23 83 158 77)(24 84 159 78)(25 85 160 79)(26 86 121 80)(27 87 122 41)(28 88 123 42)(29 89 124 43)(30 90 125 44)(31 91 126 45)(32 92 127 46)(33 93 128 47)(34 94 129 48)(35 95 130 49)(36 96 131 50)(37 97 132 51)(38 98 133 52)(39 99 134 53)(40 100 135 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 150)(2 149)(3 148)(4 147)(5 146)(6 145)(7 144)(8 143)(9 142)(10 141)(11 140)(12 139)(13 138)(14 137)(15 136)(16 135)(17 134)(18 133)(19 132)(20 131)(21 130)(22 129)(23 128)(24 127)(25 126)(26 125)(27 124)(28 123)(29 122)(30 121)(31 160)(32 159)(33 158)(34 157)(35 156)(36 155)(37 154)(38 153)(39 152)(40 151)(41 89)(42 88)(43 87)(44 86)(45 85)(46 84)(47 83)(48 82)(49 81)(50 120)(51 119)(52 118)(53 117)(54 116)(55 115)(56 114)(57 113)(58 112)(59 111)(60 110)(61 109)(62 108)(63 107)(64 106)(65 105)(66 104)(67 103)(68 102)(69 101)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)

G:=sub<Sym(160)| (1,101,136,55)(2,102,137,56)(3,103,138,57)(4,104,139,58)(5,105,140,59)(6,106,141,60)(7,107,142,61)(8,108,143,62)(9,109,144,63)(10,110,145,64)(11,111,146,65)(12,112,147,66)(13,113,148,67)(14,114,149,68)(15,115,150,69)(16,116,151,70)(17,117,152,71)(18,118,153,72)(19,119,154,73)(20,120,155,74)(21,81,156,75)(22,82,157,76)(23,83,158,77)(24,84,159,78)(25,85,160,79)(26,86,121,80)(27,87,122,41)(28,88,123,42)(29,89,124,43)(30,90,125,44)(31,91,126,45)(32,92,127,46)(33,93,128,47)(34,94,129,48)(35,95,130,49)(36,96,131,50)(37,97,132,51)(38,98,133,52)(39,99,134,53)(40,100,135,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150)(2,149)(3,148)(4,147)(5,146)(6,145)(7,144)(8,143)(9,142)(10,141)(11,140)(12,139)(13,138)(14,137)(15,136)(16,135)(17,134)(18,133)(19,132)(20,131)(21,130)(22,129)(23,128)(24,127)(25,126)(26,125)(27,124)(28,123)(29,122)(30,121)(31,160)(32,159)(33,158)(34,157)(35,156)(36,155)(37,154)(38,153)(39,152)(40,151)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)>;

G:=Group( (1,101,136,55)(2,102,137,56)(3,103,138,57)(4,104,139,58)(5,105,140,59)(6,106,141,60)(7,107,142,61)(8,108,143,62)(9,109,144,63)(10,110,145,64)(11,111,146,65)(12,112,147,66)(13,113,148,67)(14,114,149,68)(15,115,150,69)(16,116,151,70)(17,117,152,71)(18,118,153,72)(19,119,154,73)(20,120,155,74)(21,81,156,75)(22,82,157,76)(23,83,158,77)(24,84,159,78)(25,85,160,79)(26,86,121,80)(27,87,122,41)(28,88,123,42)(29,89,124,43)(30,90,125,44)(31,91,126,45)(32,92,127,46)(33,93,128,47)(34,94,129,48)(35,95,130,49)(36,96,131,50)(37,97,132,51)(38,98,133,52)(39,99,134,53)(40,100,135,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,150)(2,149)(3,148)(4,147)(5,146)(6,145)(7,144)(8,143)(9,142)(10,141)(11,140)(12,139)(13,138)(14,137)(15,136)(16,135)(17,134)(18,133)(19,132)(20,131)(21,130)(22,129)(23,128)(24,127)(25,126)(26,125)(27,124)(28,123)(29,122)(30,121)(31,160)(32,159)(33,158)(34,157)(35,156)(36,155)(37,154)(38,153)(39,152)(40,151)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90) );

G=PermutationGroup([[(1,101,136,55),(2,102,137,56),(3,103,138,57),(4,104,139,58),(5,105,140,59),(6,106,141,60),(7,107,142,61),(8,108,143,62),(9,109,144,63),(10,110,145,64),(11,111,146,65),(12,112,147,66),(13,113,148,67),(14,114,149,68),(15,115,150,69),(16,116,151,70),(17,117,152,71),(18,118,153,72),(19,119,154,73),(20,120,155,74),(21,81,156,75),(22,82,157,76),(23,83,158,77),(24,84,159,78),(25,85,160,79),(26,86,121,80),(27,87,122,41),(28,88,123,42),(29,89,124,43),(30,90,125,44),(31,91,126,45),(32,92,127,46),(33,93,128,47),(34,94,129,48),(35,95,130,49),(36,96,131,50),(37,97,132,51),(38,98,133,52),(39,99,134,53),(40,100,135,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,150),(2,149),(3,148),(4,147),(5,146),(6,145),(7,144),(8,143),(9,142),(10,141),(11,140),(12,139),(13,138),(14,137),(15,136),(16,135),(17,134),(18,133),(19,132),(20,131),(21,130),(22,129),(23,128),(24,127),(25,126),(26,125),(27,124),(28,123),(29,122),(30,121),(31,160),(32,159),(33,158),(34,157),(35,156),(36,155),(37,154),(38,153),(39,152),(40,151),(41,89),(42,88),(43,87),(44,86),(45,85),(46,84),(47,83),(48,82),(49,81),(50,120),(51,119),(52,118),(53,117),(54,116),(55,115),(56,114),(57,113),(58,112),(59,111),(60,110),(61,109),(62,108),(63,107),(64,106),(65,105),(66,104),(67,103),(68,102),(69,101),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90)]])

92 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A···8H10A···10F20A···20X40A···40AF
order12222222444444444444558···810···1020···2040···40
size1111202020201111222220202020222···22···22···22···2

92 irreducible representations

dim1111111222222222222
type+++++++++++++
imageC1C2C2C2C2C2C4D4D5D8C4○D4D10D10C4○D8C4×D5D20D40C4○D20D407C2
kernelC4×D40C405C4D205C4C4×C40C4×D20C2×D40D40C2×C20C4×C8C20C20C42C2×C8C10C8C2×C4C4C4C2
# reps112121822422448816816

Matrix representation of C4×D40 in GL4(𝔽41) generated by

9000
0900
0010
0001
,
403500
63500
00183
003836
,
6100
63500
002516
00216
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[40,6,0,0,35,35,0,0,0,0,18,38,0,0,3,36],[6,6,0,0,1,35,0,0,0,0,25,2,0,0,16,16] >;

C4×D40 in GAP, Magma, Sage, TeX

C_4\times D_{40}
% in TeX

G:=Group("C4xD40");
// GroupNames label

G:=SmallGroup(320,319);
// by ID

G=gap.SmallGroup(320,319);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,58,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^4=b^40=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽